Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
mà \(\sqrt{x}-3⋮\sqrt{x}-3\)
nên \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
mà \(\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}\in\left\{1;2;4;5;7\right\}\)
hay \(x\in\left\{1;4;16;25;49\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{1;4;16;25;49\right\}\)
a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2
=>-3 chia hết cho x+2
=>x+2 thuộc {1;-1;3;-3}
=>x thuộc {-1;-3;1;-5}
b: B nguyên khi x^2+x+3 chia hết cho x+1
=>3 chia hết cho x+1
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.
Mà $x-2< x+4$ nên $x-2=1$
$\Rightarrow x=3$
Thay vào $A$ thì $A=7$ là snt (thỏa mãn)
b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$
Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:
$x-2<0< x+4$
$\Rightarrow -4< x< 2$
$x$ nguyên nên $x=-3,-2,-1,0,1$
https://olm.vn/hoi-dap/question/522644.html
Bạn tham khảo nha
Đề bài hơi khác
Ta có : \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
Vậy để A là số nguyên thì \(5⋮x-2\Leftrightarrow x-2\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng sau :
Vậy khi \(x\in\left(3;1;7;-3\right)\)thì A là 1 số nguyên