Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-\dfrac{2}{5}\right|-\dfrac{1}{2}=\dfrac{1}{3}.\dfrac{1}{4}-\dfrac{1}{5}\)
\(\Rightarrow\left|x-\dfrac{2}{5}\right|-\dfrac{1}{2}=\dfrac{-7}{60}\)
\(\Rightarrow\left|x-\dfrac{2}{5}\right|=\dfrac{23}{60}\)
\(\Rightarrow x-\dfrac{2}{5}=\dfrac{23}{60}\) hoặc \(x-\dfrac{2}{5}=\dfrac{-23}{60}\)
\(\Rightarrow x=\dfrac{47}{60}\) hoặc \(x=\dfrac{1}{60}\)
Vậy \(x\in\left\{\dfrac{47}{60};\dfrac{1}{60}\right\}\)
a; \(\dfrac{6}{x}\) < \(\dfrac{x}{7}\) < \(\dfrac{8}{x}\)
vì \(x\) \(\in\) N* ta có: 6.7 < \(x.x\) < 7.8
42 < \(x^2\) < 56
\(x^2\) = 49
\(x\) = \(\pm\) 7
Vì \(x\) \(\in\) N*; \(x\) = 7
b; \(\dfrac{x}{11}\) < \(\dfrac{12}{x}\) < \(\dfrac{x}{9}\)
9.12< \(x^2\) < 11.12
108 < \(x^2\) < 132
\(x^2\) = 121
\(\left[{}\begin{matrix}x=-11\\x=11\end{matrix}\right.\)
Vì \(x\in\) N*
\(x\) = 11
\(x+\left|\dfrac{1}{2}-\dfrac{1}{3}\right|=\left|\dfrac{-2}{3}-\dfrac{1}{4}\right|\)
\(x+\left|\dfrac{1}{6}\right|=\left|\dfrac{-11}{12}\right|\)
\(x+\dfrac{1}{6}=\dfrac{11}{12}\)
\(x=\dfrac{11}{12}-\dfrac{1}{6}\)
\(x=\dfrac{3}{4}\)
Vậy ...
\(A=\frac{3}{2}\times\left(\frac{1}{13\times11}+\frac{1}{13\times15}+\frac{1}{15\times17}+.....+\frac{1}{97\times99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\frac{8}{99}\)
\(A=\frac{4}{33}\)
b] \(\frac{A}{5}=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{57}\)
\(\Rightarrow A=5\left(\frac{1}{31}-\frac{1}{57}\right)=\frac{130}{1767}\)
c] Ta đặt \(\left(8n+5,6n+4\right)=d\)
\(\Rightarrow\frac{8n+5\div d}{6n+4\div d}\Rightarrow4\times\left(6n+4\right)-3\times\left(8n+5\right)=\left(24n+16\right)-\left(24n+15\right):d\)\(\Rightarrow d=1\)
Vậy \(\frac{8n+5}{6n+4}\)là phân số tối giản
1) \(2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\)
\(\Leftrightarrow2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\)
\(\Leftrightarrow\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\)
\(\Leftrightarrow\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{7}{8}+\dfrac{1}{3}\\\dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{13}{24}\\\dfrac{1}{2}x=\dfrac{29}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\left(-\dfrac{13}{24}\right):\dfrac{1}{2}\\x=\dfrac{29}{24}:\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{13}{12}\\x=\dfrac{29}{12}\end{matrix}\right.\)
2) \(\dfrac{3}{4}-2\left|2x-\dfrac{2}{3}\right|=2\)
\(\Leftrightarrow2\left|2x-\dfrac{2}{3}\right|=\dfrac{3}{4}-2\)
\(\Leftrightarrow2\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{8}\)
\(\Leftrightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{8}:2\)
\(\Leftrightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{2}{3}=\dfrac{-5}{16}\\2x-\dfrac{2}{3}=\dfrac{5}{16}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{-5}{16}+\dfrac{2}{3}\\2x=\dfrac{5}{16}+\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{17}{48}\\2x=\dfrac{47}{48}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{48}:2\\x=\dfrac{47}{48}:2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{96}\\x=\dfrac{47}{96}\end{matrix}\right.\)
Câu 5
Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố
Suy ra 3p+7=2(L)
Khí đó p chẵn,mà p là số nguyên tố nên p=2
Vậy p=2
Câu 3
Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)
Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương
Suy ra a-b là số chính phương
Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)
Với a-b=1 mà 0<b<a nên ta có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Với a-b=4 mà a>b>0 nên ta có bảng sau:
a | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 |
Vậy ..............
a) 218-(x+31)= -12
=> 218 + 12 - ( x + 31 ) = 0
=> 230 - x - 31 = 0
=> 199 - x = 0
=> x = 199
b) \(\dfrac{x+5}{3}=\dfrac{6-x}{-2}\)
=> \(\dfrac{x+5}{3}=\dfrac{-6+x}{2}\)
=>2.( x + 5 ) = 3.( -6 + x )
=> 2x +10 = -18 +3x
=> 28 = x