Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Nguyễn Ngọc Quý làm rồi
b, (x2 + 7)(x2 - 49) < 0
=> x2 + 7 và x2 - 49 là 2 số khác dấu (1 âm 1 dương)
Mà x2 + 7 > x2 - 49 => x2 + 7 là dương còn x2 - 49 là âm
=> -7 < x2 < 49
=> x2 thuộc {1; 4; 9; 16; 25; 36}
=> x thuộc {1; 2; 3; 4; 5; 6}
Vậy...
c, tương tự b
(x^2+7)(x^2-49)<0
=>x^2-7 và x^2-49 trái dấu
Mà x^2-7>x^2-49
=>x^2-7>0 và x^2-49<0
=>x^2>7 và x^2<49
=>x^2 E {9;16;25;36}
=>x E {3;4;5;6}
c, tương tự
c: \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\\x=-5\\x=5\end{matrix}\right.\)
\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)
a)\(\left(x2+7\right).\left(x2-49\right)< 0\)
\(\left(x2+7\right).\left(x2-49\right)< 0\) chứng tỏ hai vế \(\left(x2+7\right)\) và \(\left(x2-49\right)\) khác dấu nhau .
\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)
Vì \(\left(x2+7\right)\) > \(\left(x2-49\right)\)
Nên ta có:
\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}\left(x+7\right)=0\\\left(x-49\right)=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}x=-7\\x=49\end{matrix}\right.\)
Vậy hai số nguyên đó là -7 và 49 .
Còn phần còn lại bạn làm tương tự nhé !
Bài 1:
a) Ta có: (x2 - 36)(x2 -25)= 0
\(\Leftrightarrow\)(x2 - 62)(x2 - 52)= 0
\(\Leftrightarrow\)(x - 6)(x + 6)(x - 5)(x + 5)= 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\)
\(\orbr{\begin{cases}x-5=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
b) \(CMTT\)câu a
Ta có:\(\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
\(\orbr{\begin{cases}x=8\\x=-8\end{cases}}\)
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+7 | 1 | -1 | 2 | -2 |
x | -6 | -8 | -5 | -9 |
Lời giải:
a. $(x^2-9)(5x+15)=0$
$\Rightarrow x^2-9=0$ hoặc $5x+15=0$
Nếu $x^2-9=0$
$\Rightarrow x^2=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $-3$
Nếu $5x+15=0$
$\Rightarrow x=-3$
b.
$x^2-8x=0$
$\Rightarrow x(x-8)=0$
$\Rightarrow x=0$ hoặc $x-8=0$
$\Rightarrow x=0$ hoặc $x=8$
c.
$5+12(x-1)^2=53$
$12(x-1)^2=53-5=48$
$(x-1)^2=48:12=4=2^2=(-2)^2$
$\Rightarrow x-1=2$ hoặc $x-2=-2$
$\Rightarrow x=3$ hoặc $x=0$
d.
$(x-5)^2=36=6^2=(-6)^2$
$\Rightarrow x-5=6$ hoặc $x-5=-6$
$\Rightarrow x=11$ hoặc $x=-1$
e.
$(3x-5)^3=64=4^3$
$\Rightarrow 3x-5=4$
$\Rightarrow 3x=9$
$\Rightarrow x=3$
f.
$4^{2x}+2^{4x+3}=144$
$2^{4x}+2^{4x}.8=144$
$2^{4x}(1+8)=144$
$2^{4x}.9=144$
$2^{4x}=144:9=16=2^4$
$\Rightarrow 4x=4\Rightarrow x=1$
a) (x - 2)(x + 1) =10
TH1: x - 2 = 0 => x= 2
TH2: x- 1= 0 => x= -1
Tương tự