Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :+ Nếu p = 2 => p + 2 = 4 P (loại)
+ Nếu p = 3 => p + 2 = 5 P , p + 4 = 7 P
+ Nếu p > 3 => vì p nguyên tố nên p 3 => p = 3k + 1; p = 3k + 2(k N)
Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3
mà p > 3 nên p là hợp số
Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3
mà p > 3 nên p là hợp số
=>không có giá trị nguyên tố p lơn hơn 3 nào thoả mãn.
Vậy p = 3 là giá trị duy nhất cần tìm
Thử `p=2`
`=>p+2=4(HS)`
`=>p=2`(loại).
Thử `p=3`
`=>p+12=15(HS)`
`=>p=3`(loại).
Thử `p=5`
`=>` \begin{cases}p+2=7(SNT)\\p+6=11(SNT)\\p+8=13(SNT)\\p+12=17(SNT)\\p+14=19(SNT)\\\end{cases}
`=>p=5(TM)`
Nếu `p>5` mà p là SNT
`=>p cancel{vdost} 5`
`=>p=5k+1,5k+2,5k+3,5k+4`
`+)p=5k+1=>p+14=5k+15 vdots 5`
`=>p=5k+1` (loại).
`+)p=5k+2=>p+8=5k+10 vdots 5`
`=>p=5k+2` (loại).
`+)p=5k+3=>p+12=5k+15 vdots 5`
`=>p=5k+3` (loại).
`+)p=5k+4=>p+6=5k+10 vdots 5`
`=>p=5k+4` (loại).
Vậy `p=5`
p = 5
Gợi ý : ( bệnh nhác làm )
Xét 5 trường hợp : 5k ; 5k + 1 ; 5k + 2 ; 5k + 3 ; 5k + 4
Với p là số nguyên tố ta xét các giá trị của p
• p=2=> p+2;p+6;p+8;p+12;p+14 đều là hợp số vì đều chia hết cho 2 (loại)
•p=3=> p+6=3+6=9 là hợp số (loại)
• p=5. Ta có
p+2=5+2=7
p+6=5+6=11
p+8=5+8=13
p+12=5+12=17
p+14=5+14=19
Các kết quả trên đều là số nguyên tố nên p=5 (chọn)
Với p khác 5 và p>5 => p=5k+1;5k+2;5k+3;5k+4 (k thuộc N*)
• p=5k+1=> p+14=5k+1+14=5k+15 là hợp số vì chia hết cho 5 (loại)
• p=5k+2=> p+8=5k+2+8=5k+10 là hợp số vì chia hết cho 5 (loại)
• p=5k+3=> p+2=5k+3+2=5k+5 là hợp số (loại)
• p=5k+4=> p+6=5k+4+6=5k+10 là hợp số (loại)
Vậy p=5