K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

số 3 nhé 

k nha 

16 tháng 11 2016

Số 3

bạn nhé

tk nha@@@@@@@@@@@@@@@@@@@@@

Thank kiu

1 tháng 11 2015

dat p = 3k; 3k+1;3k+2

 + neu p= 3k => p+10= 3k+10

                        p+14= 3k+14(c)

+ neu p= 3k+1=> p+10= 3k+11

                       p+14= 3k+15= 3(k+5)(l)

+ ne p= 3k+2=> p+10= 3k+12= 3(k+4)

                       p+14= 3k+14 (l)

=> p=3k

ma p la snt

=> p=3

 

           

6 tháng 3 2016

là 3 . k nha

6 tháng 3 2016

đó là 3 vì 13 và 17 là số nguyên tố 

27 tháng 3 2016

Số nguyên tố p là 3

27 tháng 3 2016

do p là số nguyên tố =>p>=2 
xét p=2 => p+10 =12 (không là số nguyên tố) 
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố) 
=> p=3 thỏa mãn đề bài 
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1 
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý 
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố 
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài 
p=3 là số nguyên tố duy nhất thỏa mãn đề bài 

15 tháng 4 2015

 trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 
+) nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 
+) nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (2) 
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 
từ (1), (2), (3) suy ra p=3 là giá trị cần tìm.

15 tháng 4 2015

vì p+10 và P+14 đều là số nguyên tố nên có 1 trong 3 dạng:

                                  3k,3k+1,3k+2

nếu p=3k thì p=3 suy ra p+10=13;p+14=17(là số nguyên tố)

 nếu p=3k+1 thì p+14=3k+1+14

                               =3k+15 chia hết cho 3

do p+14>3 và p+14 chia hết cho 3 là hợp số(không thõa mãn)

nếu p=3k+2 thì p+10=3k+2+10

                              3k+12 chia hết cho 3

do P+10>3 và p+10 chia hết cho 3 là hợp số(không thõa mãn)

vậy để p+10 và p+14 là số nguyên tố thì p=3

8 tháng 3 2020

a) Với p=2 => p+10=12 không là số nguyên tố (loại)

Với p=3 => p+10=13 và p+14=17 là các số nguyên tố  (thỏa mãn)

p là số nguyên tố lớn hơn hoặc bằng 3

=> p có dạng 3k+1 ; 3k+2  ( k thuộc N*)

Với p=3k+1 => p+14=3k+15 chia hết cho 3  (loại)

Với p=3k+2 => p+10=3k+12 chia hết cho 3  (loại)

Vậy p=3.

8 tháng 3 2020

a) Nếu p =2 thì p+10= 12; p+14= 16 ( loại)

Vì p là số nguyên tố nên p có dạng 3k; 3k+1; 3k+2

Nếu p =3k thì p = 3 ( vì p là số nguyên tố) khi đó: p+10 = 13; p+14=17 

Nếu p=3k+2 thì p+10= 3k+2+10=  3k+12= 3( k+4) ( vì 3 chia hết cho 3 nên 3(k+4) chia hết cho 3=> p+10 là hợp số trái với đề bài)

Nếu p= 3k+1 thì = 3k+1+14= 3k+15= 3(k+5) (vì...................................................................................................................)

Vậy.......

Chỗ vì thì bn vì như dòng trên nha, còn phần b làm tương tự 

7 tháng 3 2020

a, Th1 : P = 2 => P + 10 = 12 chia hết cho 2 => P là hợp số < Loại >

Th2 : P > 2 => P sẽ có dạng là : 3k ; 3k +1 ; 3k + 2 ( k thuộc N*)

+, Với P = 3k => P = 3 ( P là SNT ) => P + 10 = 13 ; P + 14 = 17 , là SNT < TM >

+ Với P = 3k + 1 => P + 14 = 3k + 1 + 14 = 3k + 15 = 3(k+5) chia hết cho 3 => là hợp số < Loại >

+ Với P = 3k +2 => P + 10 = 3k + 2 + 10 = 3k + 12 = 3(k+4) chia hết cho 3 => là hợp số < Loại >

Vậy P = 3

b, Tương tự 

8 tháng 3 2016

Với p>3 thì p có dạng 3k+1 hoặc 3k+2

*p=3k+1=>p+14=3k+15=3.(k+5) chia hết cho 3

*p=3k+2=>p+10=3k+12=3.(k+4) chia hết cho 2

Vậy p không thể >3

=>p=2 hoặc p=3

*p=2 =>p+10=12 không phải là số nguyên tố.

*p=3=>p+10=13 là số nguyên tố ; p+14=17 là số nguyên tố

Vậy p=3

1 tháng 11 2015

Bài 2 : c)

+Nếu p = 2 ⇒ p + 2 = 4 (loại)

+Nếu p = 3 ⇒ p + 6 = 9 (loại)

+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)

⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.

Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp : 

 - Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !