K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HH
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TH
1
14 tháng 8 2017
Để \(k^2+6k+1\)là số chính phương thì \(k^2+6k+1=a^2\left(a\in N\right)\)
\(\left(k^2+6k+9\right)-8=a^2\)
\(\Leftrightarrow\left(k+3\right)^2-a^2=8\)
\(\Leftrightarrow\left(k+a+3\right)\left(k-a+3\right)=8\)
Đến đây liệt kê ước của 8 ra rùi giải tiếp :))
LH
1
2 tháng 11 2023
Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.
LN
0
NT
0
NV
Nguyễn Việt Lâm
Giáo viên
30 tháng 1 2022
\(n^2+3n=k^2\)
\(\Leftrightarrow4n^2+12n=4k^2\)
\(\Leftrightarrow\left(2n+3\right)^2-9=\left(2k\right)^2\)
\(\Leftrightarrow\left(2n+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2n-2k+3\right)\left(2n+2k+3\right)=9\)
Phương trình ước số cơ bản
SP
0