K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Để \(k^2+6k+1\)là số chính phương thì \(k^2+6k+1=a^2\left(a\in N\right)\)

\(\left(k^2+6k+9\right)-8=a^2\)

\(\Leftrightarrow\left(k+3\right)^2-a^2=8\)

\(\Leftrightarrow\left(k+a+3\right)\left(k-a+3\right)=8\)

Đến đây liệt kê ước của 8 ra rùi giải tiếp :))

30 tháng 5 2019

Đặt M = k 4 − 8 k 3 + 23 k 2 − 26 k + 10  

Ta có M = ( k 4 − 2 k 2 + 1 ) − 8 k ( k 2 − 2 k + 1 ) + 9 k 2 − 18 k + 9 = ( k 2 − 1 ) 2 − 8 k ( k − 1 ) 2 + 9 ( k − 1 ) 2 = ( k − 1 ) 2 . ( k − 3 ) 2 + 1   

M là số chính phương khi và chỉ khi  ( k − 1 ) 2 = 0  hoặc ( k − 3 ) 2 + 1  là số chính phương.

TH 1. ( k − 1 ) 2 = 0 ⇔ k = 1.  

TH 2. ( k − 3 ) 2 + 1  là số chính phương, đặt ( k − 3 ) 2 + 1 = m 2 ( m ∈ ℤ )  

⇔ m 2 − ( k − 3 ) 2 = 1 ⇔ ( m − k + 3 ) ( m + k − 3 ) = 1  

Vì  m , k ∈ ℤ ⇒ m − k + 3 ∈ ℤ , m + k − 3 ∈ ℤ  nên

m − k + 3 = 1 m + k − 3 = 1 hoặc  m − k + 3 = − 1 m + k − 3 = − 1 ⇔ m = 1 , k = 3 m = − 1 , k = 3 ⇒ k = 3

Vậy k = 1 hoặc k = 3 thì k 4 − 8 k 3 + 23 k 2 − 26 k + 10  là số chính phương