Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(1\le x< y< z\)
\(\Rightarrow\frac{1}{x}>\frac{1}{y}>\frac{1}{z}\)
\(\Rightarrow\frac{3}{x}>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
=> x < 3 (1)
Mà \(\frac{1}{x}< 1\) => x > 1 (2)
Từ (1) và (2) => x = 2
Ta có: \(\frac{1}{2}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{y}>\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
=> y < 4 (3)
Mà x < y => 2 < y (4)
Từ (3) và (4) => y = 3
Lại có: \(\frac{1}{3}+\frac{1}{z}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{z}=\frac{1}{6}\)
=> z = 6
Vậy x = 2, y = 3, z = 6
\(2^m-2^n=256\)
\(\Rightarrow2^n\left(2^{m-n}-1\right)=256\)
Vì \((2^{m-n}-1)\)không chia hết cho 2
Mà \(\)256 chia hết cho \(2^{m-n}-1\)
Nên \(2^{m-n}-1=1\)
\(\Rightarrow2^{m-n}=1+1=2\)
\(\Rightarrow m-n=1\)
\(\Rightarrow2^n\left(2^1-1\right)=256\)
\(\Rightarrow2^n=2^8\)
\(\Rightarrow n=8\\\)
\(\Rightarrow m=8+1=9\)
Vậy m=9,n=8
\(2^n-1⋮7\Rightarrow2^n-1=7k\left(k\in N\right)\)
\(\Rightarrow2^n=7k+1\)
Vì \(7k+1\) luôn lẻ với mọi k Để \(2^n=7k+1\Leftrightarrow n=0\)
Với \(n=0\) thì \(2^0-1=1-1=0⋮7\)
Vậy \(n=0\)
\(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow\frac{1}{3^2}.\left(3^3\right)^n=3^n\)
\(\Rightarrow3^{-2}.3^{3n}=3^n\)
\(\Rightarrow3^{3n-2}=3^n\)
=>3n-2=n
=>2=3n-n
=>2=2n
=>n=1
vậy n=1
\(\frac{3m+n}{5+2}=\frac{42}{7}=6\)
=> 3m=6=>m=5.6=30
n=6=.6.2=12
theo đề bài ta có:
5n+3m= 2015
=> 3m=2015-5n
=> 3m=5(403-n)
=> m=5(403-n)/3
vì 5 không chia hết cho 3 nên (403-n) phải chia hết cho 3 thì m mới là số nguyên
đk 1<=n<403
=> n thuộc tập hợp các số {1,4,7,10...,400}
số số hạng dãy n là : (400-1)/3+1=134 (số số hạng)
vậy sẽ có 134 cặp:
ví dụ n= 1 thì m= 607
n= 4 thì m=665
tương tự các số còn lại