Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đề bài ta có:
5n+3m= 2015
=> 3m=2015-5n
=> 3m=5(403-n)
=> m=5(403-n)/3
vì 5 không chia hết cho 3 nên (403-n) phải chia hết cho 3 thì m mới là số nguyên
đk 1<=n<403
=> n thuộc tập hợp các số {1,4,7,10...,400}
số số hạng dãy n là : (400-1)/3+1=134 (số số hạng)
vậy sẽ có 134 cặp:
ví dụ n= 1 thì m= 607
n= 4 thì m=665
tương tự các số còn lại
\(\dfrac{1}{2x}+\dfrac{1}{2y}+\dfrac{1}{xy}=\dfrac{1}{2}\)
\(\dfrac{y}{2xy}+\dfrac{x}{2xy}+\dfrac{2}{2xy}=\dfrac{xy}{2xy}\)
=> x + y + 2 = xy
x + y - xy = -2
x.( 1 - y ) + y = -2
x.( 1 - y ) - ( 1 - y ) = -2 - 1
( 1 - y ).( x - 1 ) = -3
- ( y - 1 ).( x - 1) = -3
=> ( y - 1 ).( x - 1 ) = 3
=> ( y - 1 ) ; ( x - 1 ) \(\in\) Ư( 3 ) = { 1; -1; 3; -3 }
Ta có bảng sau
y - 1 | 1 | -1 | 3 | -3 |
y | 2 | 0 | 4 | -2 |
x - 1 | 3 | -3 | 1 | -1 |
x | 4 | -2 | 2 | 0 |
Vậy ( x ; y ) \(\in\) { ( 4 ; 2 ); ( -2 ; 0 ); ( 2; 4 ); ( 0; -2 ) }
Giả sử \(1\le x< y< z\)
\(\Rightarrow\frac{1}{x}>\frac{1}{y}>\frac{1}{z}\)
\(\Rightarrow\frac{3}{x}>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
=> x < 3 (1)
Mà \(\frac{1}{x}< 1\) => x > 1 (2)
Từ (1) và (2) => x = 2
Ta có: \(\frac{1}{2}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{y}>\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
=> y < 4 (3)
Mà x < y => 2 < y (4)
Từ (3) và (4) => y = 3
Lại có: \(\frac{1}{3}+\frac{1}{z}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{z}=\frac{1}{6}\)
=> z = 6
Vậy x = 2, y = 3, z = 6
\(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow\frac{1}{3^2}.\left(3^3\right)^n=3^n\)
\(\Rightarrow3^{-2}.3^{3n}=3^n\)
\(\Rightarrow3^{3n-2}=3^n\)
=>3n-2=n
=>2=3n-n
=>2=2n
=>n=1
vậy n=1
\(2^n-1⋮7\Rightarrow2^n-1=7k\left(k\in N\right)\)
\(\Rightarrow2^n=7k+1\)
Vì \(7k+1\) luôn lẻ với mọi k Để \(2^n=7k+1\Leftrightarrow n=0\)
Với \(n=0\) thì \(2^0-1=1-1=0⋮7\)
Vậy \(n=0\)
Gọi a,b là 2 số cần tìm(a>b>0 và a,b thuộc Z)
Theo đề:a+b,a-b,ab tỉ lệ nghịch với 20,140,7
<=>20(a+b)=140(a-b)(1) và 140(a-b)=7ab (2)
Ta có:
(1)<=>20b+140b=140a-20a
<=>160b=120a
=>a=4/3.b thế vào (2) đc:
140(4/3b-b)=7.(4/3 b)b
<=>140/3.b=28/3.b²
<=>b=(140/3):(28/3)=5
=>a=4/3.5=20/3(loại vì a thuộc Z)
Vậy hok có a,b nào thỏa mãn điều kiện đề bài...
\(\frac{1}{8}.16^n=2^n\)
\(\Rightarrow2^n=2^n\)
\(\Rightarrow n\in R\)
~~~~~~~~~~~~~~
~~~~~~~~~~~~
~~~~~~~~~~~~~~