Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4^{27}+4^{2016}+4^n\)
Với \(n\ge27\):
\(A=4^{27}\left(1+4^{1989}+4^{n-27}\right)\)
\(A\)là số chính phương suy ra \(B=4^{n-27}+4^{1989}+1\)là số chính phương.
\(B=\left(2^{n-27}\right)^2+2^{3978}+1\)
\(=\left(2^{3977+n-4004}\right)^2+2.2^{3977}+1\)
Với \(n=4004\)thì:
\(B=\left(2^{3977}\right)^2+2.2^{3977}+1=\left(2^{3977}+1\right)^2\)là số chính phương.
Với \(n>4004\)thì:
\(B>\left(2^{3977+n-4004}\right)^2\)
\(B< \left(2^{3977+n-4004}\right)^2+2.2^{3977+n-4004}+1\)
\(=\left(2^{3977+n-4004}+1\right)^2\)
Suy ra \(\left(2^{3977+n-4004}\right)^2< B< \left(2^{3977+n-4004}+1\right)^2\)do đó \(B\)không là số chính phương.
Vậy giá trị lớn nhất của \(n\)là \(4004\).
\(n^2+3n=k^2\)
\(\Leftrightarrow4n^2+12n=4k^2\)
\(\Leftrightarrow\left(2n+3\right)^2-9=\left(2k\right)^2\)
\(\Leftrightarrow\left(2n+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2n-2k+3\right)\left(2n+2k+3\right)=9\)
Phương trình ước số cơ bản
Bạn có thể tham khảo link này ( mình lấy bên diendantoanhoc )
How to solve in the set positive integer the equation n^3 + 2019 n = k^2?