Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên thì n-4 chia hết cho 4n-8
=>4n-16 chia hết cho 4n-8
=>4n-8-8 chia hết cho 4n-8
=>4n-8 thuộc Ư(-8)
=>4n-8 thuộc {1;-1;2;-2;4;-4;8;-8}
mà n là số nguyên dương
nên n thuộc {3;1;4}
B=3n+9/n-4
B=[3.(n-4)+21]/(n-4)
B=3 + 21/(n-4)
B nguyên<=>21/n-4 nguyên<=>21 chia hết cho n-4
<=>n-4 E Ư(21)={-21;-7;-3;-1;1;3;7;21}
<=>n E {-17;-3;1;3;5;7;11;25}
Vậy..........
Để A là số nguyên thì 3n+5 chia hết cho n+4
=>3n+12-7 chia hết cho n+4
=>n+4 thuộc {1;-1;7;-7}
=>n thuộc {-3;-5;3;-11}
a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1
=>3(n-1)+7 chia hết cho n-1
=> n-1 thuộc Ư(7)={1;7;-1;-7}
Phần cuối bn tự làm nha
Còn câu b làm tương tự
a) Từ đề bài, ta có:
\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)
b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)
\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)
Để M là số nguyên thì \(3n-1⋮n-1\)
=>\(3n-3+2⋮n-1\)
=>\(2⋮n-1\)
=>\(n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{2;0;3;-1\right\}\)
a) ta có: \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3.\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)
Để A là số nguyên
=> 21/n-4 là số nguyên
\(\Rightarrow21⋮n-4\Rightarrow n-4\inƯ_{\left(21\right)}=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
nếu n-4 = 1 => n = 5 (TM) => \(A=3+\frac{21}{5-1}=3+\frac{21}{1}=3+21=24\)
....
bn tự xét típ nha
Để A là số nguyên thì : ( dấu " : " là dấu chia hết cho )
3n + 9 : n - 4
3n - 12 + 21 : n - 4
3 ( n - 4 ) + 21 : n - 4
mà 3 ( n - 4 ) : n - 4
=> 21 : n - 4 => n - 4 thuộc Ư(21) = { 1; 3; 7; 21; -1; -3; -7; -21 }
Ta có bảng :
n-4 | 1 | 3 | 7 | 21 | -1 | -3 | -7 | -21 |
n | 5 | 7 | 11 | 25 | 3 | 1 | -3 | -17 |
Vậy,.........
Giải:
Để \(\frac{3n-4}{n+2}\in Z\Rightarrow3n-4⋮n+2\)
Ta có: \(3n-4⋮n+2\)
\(\Rightarrow\left(3n+6\right)-10⋮n+2\)
\(\Rightarrow3\left(n+2\right)-10⋮n+2\)
\(\Rightarrow10⋮n+2\)
\(\Rightarrow n+2\in\left\{1;2;5;10\right\}\) ( không có trường hợp số âm do \(n\in Z^+\) )
+) \(n+2=1\Rightarrow n=-1\) ( loại )
+) \(n+2=2\Rightarrow n=0\) ( chọn )
+) \(n+2=5\Rightarrow n=3\) ( chọn )
+) \(n+2=10\Rightarrow n=8\) ( chọn )
Vậy \(n\in\left\{0;3;8\right\}\)
thanks