Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7 - 2n ⋮ 2n + 1
<=> 7 - 2n - 1 + 1 ⋮ 2n + 1
<=> 7 + 1 - (2n + 1) ⋮ 2n + 1
<=> 8 - (2n + 1) ⋮ 2n + 1
=> 8 ⋮ 2n + 1 Hay 2n + 1 là ước của 8
=> Ư(8) = { ± 1; ± 2; ± 4; ± 8 }
Mà 2n + 1 là số lẻ => 2n + 1 = { ± 1 }
Ta có : 2n + 1 = - 1 <=> 2n = - 2 => n = - 1 (TM)
2n + 1 = 1 <=> 2n = 0 => n = 0 (TM)
Vậy n = { - 1; 0 }
Giải:2n-1 là bội của n+3
=>2n-1\(⋮\)n+3
=>2(n+3)-7
Mà 2(n+3)\(⋮\)n+3 và 2n-1\(⋮\)n+3 nên
=>7\(⋮\)n+3
=>n+3\(\in\)Ư(7)={1;7}
=>n\(\in\){-2;5}
Ta có: 2n + 1 \(\in\)B(n - 5)
<=> 2n + 1 \(⋮\)n - 5
<=> 2(n - 5) + 11 \(⋮\)n - 5
<=> 11 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(11) = {1; -1; 11; -11}
Lập bảng :
n - 5 | 1 | -1 | 11 | -11 |
n | 6 | 4 | 16 | -6 |
Vậy ...
2n + 7 là bội của n - 3
<=> 2(n - 3) + 13 là bội của n - 3
<=> 13 là bội của n - 3 (vì 2(n - 3) là bội của n - 3)
<=> n - 3 ∈ Ư(13) = {1; -1; 13; -13}
Lập bảng giá trị:
n - 3 | 1 | -1 | 13 | -13 |
n | 4 | 2 | 16 | -10 |
Vậy n ∈ {4; 2; 16; -10}
ta có 2n+7 chia hết cho n-3
Suy ra 2(n-3)+13 chia hết cho n-3
Suy ra 13 chia hết cho n-3 vì 2(n-3) chia hết cho n-3
Suy ra n-3\(\in\)Ư(13)={-1;-13;1;13}
ta có bảng giá trị
n-3 | -1 | -13 | 1 | 13 |
n | 2 | -10 | 4 | 16 |
Vậy n={2;-10;4;16}
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.