Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2y - x +xy = 6
=> x[12y - 1 + y] = 6
=> xy = 6 [vì 12y - 1 = 0]
=> [x,y] = [1,6];[6,1];[-1,-6];[-6,-1];[2,3];[3,2];[-2,-3];[-3,-2]
Thử lại
* nếu x = 1; y = 6 thì x2y - x +xy = 6 [thỏa]
* nếu x = 6; y = 1 thì x2y - x +xy = 36 [loại]
* nếu x = -1; y = -6 thì x2y - x +xy = 8 [loại]
* nếu x = -6; y = -1 thì x2y - x +xy = 48 [loại]
* nếu x = 2; y = 3 thì x2y - x +xy = 68 [loại]
* nếu x = 3; y = 2 thì x2y - x +xy = 84 [loại]
* nếu x = -2; y = -3 thì x2y - x +xy = 513/64 [loại]
* nếu x = -3; y = -2 thì x2y - x +xy = 730/81 [loại]
Vậy [x,y] = [1;6]
Ta có : x2y - x + xy = 6
=> x(xy - 1 ) + xy = 6
=> x(xy-1)+xy-1=5
=>(xy-1)(x-1)=5
=>xy-1 ; x-1 thuộc Ư (5)
P/S: lập bảng là ok
\(xy\left(x+1\right)-x-1=5\)\(\Leftrightarrow xy\left(x+1\right)-\left(x+1\right)=5\)
\(\Leftrightarrow\left(x+1\right)\left(xy-1\right)=5=5.1=1.5\)số nguyễn thị thêm (-) nữa
\(\orbr{\begin{cases}x+1=1=>x=0\\xy-1=5=>\left(loai\right)\end{cases}}\)\(\hept{\begin{cases}x+1=5=>x=4\\4y-1=5=>y=\frac{6}{4}\left(loai\right)\end{cases}}\)
\(\hept{\begin{cases}x+1=-1=>x=-2\\-2y-1=-5=>y=2\left(nhan\right)\end{cases}}\)
\(\hept{\begin{cases}x+1=-5=>x=-6\\-6.y-1=-1=>y=0\end{cases}}\)
KL:
x,y=(-2,2)
x,y=(-6,0)
ta có x2y -x+xy=6
=> xy(x+1)-x =6
=> xy(x+1)-1-x=6-1
=>xy(x+1)-(x+1)=5
=> (xy-1)(x+1)=5
Do \(x,y\in Z\)=> xy-1 và x+1 thuộc Ư(5)
Nên ta có bảng sau
x+1 | -5 | -1 | 1 | 5 |
x | -6 | -2 | 0 | 4 |
xy-1 | -1 | -5 | 5 | 1 |
xy | 0 | -4 | 6 | 2 |
y | 0 | 2 | ko có giá trị | ko có giá trị |
(vì x,y là số nguyên nha bạn )
Vậy \(\left(x,y\right)\in\left\{\left(-6,0\right),\left(-2,2\right)\right\}\)
*****chúc bạn học giỏi*****
\(3x^2y-x+xy=6\)
\(\Rightarrow xy\left(3x+1\right)=x+6\)
\(\Rightarrow y=\dfrac{x+6}{x\left(3x+1\right)}\left(x\ne0\right)\)
-Vì x,y là các số nguyên \(\Rightarrow\left(x+6\right)⋮\left[x\left(3x+1\right)\right]\)
\(\Rightarrow\left(x+6\right)⋮x\) và \(\left(x+6\right)⋮\left(3x+1\right)\)
\(\Rightarrow6⋮x\) và \(\left(3x+18\right)⋮\left(3x+1\right)\)
\(\Rightarrow x\inƯ\left(6\right)\) và \(\left(3x+1+17\right)⋮\left(3x+1\right)\)
\(\Rightarrow x\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\) và \(17⋮\left(3x+1\right)\)
\(\Rightarrow x\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\) và \(3x+1\inƯ\left(17\right)\)
\(\Rightarrow x\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\) và \(3x+1\in\left\{1;17;-1;-17\right\}\)
\(\Rightarrow x\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\) và \(x=-6\)
\(\Rightarrow x=-6\Rightarrow y=\dfrac{-6+6}{-6.\left[3.\left(-6\right)+1\right]}=0\)
Ta có: x + xy + y = 6
x + xy + y.1 = 6
x + xy + y = 6
x + xy + y.1 = 6
x+ y . (1 + x) = 6
(x + 1) + (1 + x) . y = 6 + 1
(x + 1) . (y + 1) = 7
Vì (x + 1) . (y + 1) = 7 mà x, y thuộc Z
nên 7 chia hết cho (x + 1) . (y + 1)
suy ra: (x + 1) . (y + 1) là ước của 7
Ta có: Ư(7) = {1; -1; 7; -7}
suy ra: (x + 1); (y + 1) thuộc {1; -1; 7; -7}
Ta có bảng sau:
.....