Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+(a-5)x-5a+2=x^2+(b+c)x+bc
=> \(\hept{\begin{cases}a-5=b+c\\2-5a=bc\end{cases}\Leftrightarrow}\)
ta co'
(x+a).(x-4)-7=(x+b).(x+c)
nen voi x=4 thi
-7=(4+b)(4+c)=-7.1=7.(-1)
do a,c,b∈Z va b,c co vai tro nhu nhau nen gia su b>=c
co 2 TH xay ra
**{4+b=7│4+c=-1}↔{b=3│c=-5}suy ra a=2
ta co(x+2)(x-4_-7=(x+3)(x-5)
** {4+b=1│4+c=-7}↔{b=-3│c=-11} suy ra a=-10
ta co(x-10)(x-4)-7=(x-3)(x-11)
Giả sử (x-a)(x-1995)+3=(x+b)(x+c)
Khi x = 1995 --> (1995+b)(1995+c)=3
Th1: 1995+b=1 và 1995+c=3
--> b=-1994; c=-1992
--> (x-a)(x-1995)+3=(x-1994)(x-1992)
--> a=1991
Th2: 1995+b=-1 và 1995+c=-3
(Bạn làm tương tự để tìm b và c, từ đó thế vào tìm được a)
Với mọi x ta có (x + a)(x – 5) + 2 = (x + b)(x + c) (1)
Khi x = 5 thì 2 = (5 + b)(5 + c).
Vì b, c là số nguyên nê (5 + b)(5 + c) llà tích của hai số nguyên .Số hai chỉ viết đc duới dạng tích của hai số
nguyên là 1.2 và (-1).(-2)
Giả sử b \leq c ta xét hai trường hợp :
* 5 + b = 1 và 5+c = 2
Thay vào (1) ta được (x + a)(x – 5) + 2 = (x – 3)(x – 4) \forall x .
với x = 4 thì a = -2. Vậy đa thức phân tích thành (x – 2)(x – 5) + 2 = (x – 4)(x – 3).
* 5 + b = -2 và 5+c = -1
Thay vào (1) ta được (x + a)(x – 5) + 2 = (x – 7)(x – 6) \forall x .
với x = 6 thì a = -8. Vậy đa thức phân tích thành (x – 8)(x – 5) + 2 = (x – 7)(x – 6).
Với mọi x ta có (x + a)(x – 5) + 2 = (x + b)(x + c) (1)
Khi x = 5 thì 2 = (5 + b)(5 + c).
Vì b, c là số nguyên nê (5 + b)(5 + c) llà tích của hai số nguyên .Số hai chỉ viết đc duới dạng tích của hai số
nguyên là 1.2 và (-1).(-2)
Giả sử b \leq c ta xét hai trường hợp :
* 5 + b = 1 và 5+c = 2
Thay vào (1) ta được (x + a)(x – 5) + 2 = (x – 3)(x – 4) \forall x .
với x = 4 thì a = -2. Vậy đa thức phân tích thành (x – 2)(x – 5) + 2 = (x – 4)(x – 3).
* 5 + b = -2 và 5+c = -1
Thay vào (1) ta được (x + a)(x – 5) + 2 = (x – 7)(x – 6) \forall x .
với x = 6 thì a = -8. Vậy đa thức phân tích thành (x – 8)(x – 5) + 2 = (x – 7)(x – 6).
Đặt \(P\left(x\right)=\left(x-a\right)\left(x+a\right)+5=x^2-a^2+5\). Để P(x) phân tích được thành tích các đa thức bậc nhất có hệ số nguyên thì \(P\left(x\right)=\left(x-c\right)\left(x-d\right)\) (vì hệ số cao nhất của P(x) bằng 1). Ta có:
\(P\left(x\right)=x^2-\left(c+d\right)x+cd\)
Đồng nhất hệ số, ta thu được \(\left\{{}\begin{matrix}c+d=0\\cd=5-a^2\end{matrix}\right.\). Không mất tính tổng quát, giả sử \(c>0\) \(\Rightarrow\left\{{}\begin{matrix}d=-c\\-c^2=5-a^2\end{matrix}\right.\)
\(\Rightarrow a^2-c^2=5\) \(\Leftrightarrow\left(a-c\right)\left(a+c\right)=5\). Do \(a-c< a+c\) nên ta xét các trường hợp:
TH1: \(\left\{{}\begin{matrix}a-c=1\\a+c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2\end{matrix}\right.\) \(\Rightarrow d=-2\). Thử lại, ta thấy thỏa mãn.
TH2: \(\left\{{}\begin{matrix}a-c=-5\\a+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\c=2\end{matrix}\right.\)\(\Rightarrow d=-2\). Thử lại, ta thấy thỏa mãn.
Vậy \(a=\pm3\) thỏa ycbt.
b) Kĩ thuật tương tự nhé.
Để Q(x) phân tích được thành tích của 2 đa thức bậc nhất hệ số nguyên thì
a) Đối với đa thức (x+a)(x-a)+5:
Để phân tích thành tích các đa thức bậc nhất có hệ số nguyên, ta cần giải phương trình (x + a)(x - a) + 5 = 0:
x² - a² + 5 = 0.
Các giá trị của a mà khi thay vào phương trình trên, phương trình có nghiệm nguyên là các giá trị riêng. Nhưng phương trình x² - a² + 5 = 0 là một phương trình bậc hai, do đó ta có thể sử dụng công thức giải nghiệm của phương trình bậc hai:
x = [-b ± √(b² - 4ac)] / (2a)
Ở đây, a = 1, b = 0 và c = -a² + 5.
Thay vào phương trình, ta có:
x = [0 ± √(0 - 4(1)(-a² + 5)) / (2(1)]
= [± √(4a² - 20)] / 2
= ± √(a² - 5) / 2.
Để phương trình có nghiệm nguyên, a² - 5 phải là bình phương của một số nguyên. Ta có thể tìm các giá trị nguyên của a bằng cách xét từng giá trị nguyên cho a và kiểm tra xem a² - 5 có phải là bình phương của một số nguyên hay không.
Ví dụ, nếu a = 1, ta có:
a² - 5 = 1² - 5 = -4,
-4 không phải là bình phương của một số nguyên, vì vậy a = 1 không phải là giá trị riêng của đa thức.
Tiếp tục quá trình trên với các giá trị nguyên khác của a, ta sẽ tìm được giá trị của a mà khi thay vào phương trình (x + a)(x - a) + 5 = 0, phương trình có nghiệm nguyên là giá trị riêng.
b) Đối với đa thức (a - x)(5 - x) - 3:
Phân tích thành tích các đa thức bậc nhất có hệ số nguyên của đa thức này cũng tương tự như trên. Ta giải phương trình (a - x)(5 - x) - 3 = 0:
(a - x)(5 - x) - 3 = 0.
Tương tự như trên, ta có thể sử dụng công thức giải nghiệm của phương trình bậc hai:
x = [-b ± √(b² - 4ac)] / (2a).
Ở đây, a = 1, b = 6 - a và c = -3.
Thay vào phương trình, ta có:
x = [(a - 6) ± √((6 - a)² - 4(-3)(1))] / (2)
Sau đó, ta tìm các giá trị của a mà làm cho phương trình có nghiệm nguyên.