Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Ta xét : \(\frac{4a^3+14a^2+6a+12}{1+2a}=\frac{2a^2\left(2a+1\right)+6a\left(2a+1\right)+12}{1+2a}=2a^2+6a+\frac{12}{1+2a}\)
Để \(\left(4a^3+14a^2+6a+12\right)⋮\left(1+2a\right)\) thì \(1+2a\inƯ\left(12\right)\)
Bạn tự liệt kê
Ta có
\(4a^3+14a^2+6a+12\)
\(=a\left(4a^2+14a+6\right)+12\)
\(=a\left[\left(4a^2+2a\right)+\left(12a+6\right)\right]+12\)
\(=a\left[2a\left(2a+1\right)+6\left(2a+1\right)\right]+12\)
\(=a\left(2a+1\right)\left(2a+6\right)+12\)
Vì \(4a^3+14a^2+6a+12\) chia hết cho 2a+1
\(=>a\left(2a+1\right)\left(2a+6\right)+12\) chia hết cho 2a+1
Mà a(2a+1)(2a+6) chia hết cho 2a+1
=> 12 chia hết cho 2a+1
=> \(2a+1\inƯ_{12}\)
Mặt khác 2a+1 lẻ
=> \(2a+1\in\left\{1;3;-1;-3\right\}\)
=> \(a\in\left\{0;1;-1;-2\right\}\)
Vậy \(a\in\left\{0;1;-1;-2\right\}\)