K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

Bài 1:

a,\(2^{225}\) \(3^{150}\)

Ta có:

\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

Vì 8 <9 nên \(8^{75}< 9^{75}\)

\(\Rightarrow2^{225}< 3^{150}\)

4 tháng 8 2019

Trừ vế theo vế hai phương trình trên ta có phương trình:

\(y^2-x^2=x^3-y^3-4x^2+4y^2+3x-3y\)

\(\Leftrightarrow\left(x^3-y^3\right)-3\left(x^2-y^2\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3x-3y+3\right)=0\)(1)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-3x-3y+3=0\end{cases}}\)

+)Với  \(x-y=0\Leftrightarrow x=y\)

Thế vào 1 trong 2 phương trình  ba đầu:

Ta có: \(x^2=x^3-4x^2+3x\Leftrightarrow x^3-5x^2+3x=0\Leftrightarrow x\left(x^2-5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5+\sqrt{13}}{2}hoacx=\frac{5-\sqrt{13}}{2}\end{cases}}\)

=> y tự làm nhé 

+) Với \(x^2+xy+y^2-3x-3y+3=0\)

Ta có: \(x^2+xy+y^2-3x-3y+3=\left(x^2+2.x.\frac{y}{2}+\frac{y^2}{4}\right)-3\left(x+\frac{y}{2}\right)+\frac{3y^2}{4}-\frac{3y}{2}+3\)

\(=\left(x+\frac{y}{2}\right)^2-2.\left(x+\frac{y}{2}\right).\frac{3}{2}+\frac{9}{4}+3\left(\frac{y^2}{4}-2.\frac{y}{2}.\frac{1}{2}+\frac{1}{4}\right)-\frac{9}{4}-\frac{3}{4}+3\)

\(=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2\ge0\)

"=" xảy ra khi và chỉ khi : \(\hept{\begin{cases}x+\frac{y}{2}-\frac{3}{2}=0\\\frac{y}{2}-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Thế vào 1 trong hai phương trình ban đầu thấy ko thỏa mãn : 1^2=1^3-4.1^2+3.1 vô lí

Kết luận nghiệm:...

NV
23 tháng 3 2022

\(x^3+y^3+3xy\le1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\le0\)

Do \(x^2+y^2-xy+x+y+1=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+x+y+1>0\)

\(\Rightarrow x+y-1\le0\Rightarrow x+y\le1\)

\(\Rightarrow P=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow P\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{y}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\ge2+\dfrac{3}{4}.\dfrac{4}{1}=5\)

\(P_{min}=5\) khi \(x=y=\dfrac{1}{2}\)

23 tháng 3 2022

Dạ , em cám ơn thầy Lâm nhiều ạ!

 

NV
6 tháng 11 2021

c.

\(f\left(x\right)=2x^2-3x\)

\(-\dfrac{b}{2a}=\dfrac{3}{4}\notin\left[4;6\right]\)

\(f\left(4\right)=20\) ; \(f\left(6\right)=54\)

\(\Rightarrow y_{max}=54\) ; \(y_{min}=20\)

d.

\(f\left(x\right)=-2x^2+x-3\)

\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-4;2\right]\)

\(f\left(-4\right)=-39\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{23}{8}\) ; \(f\left(2\right)=-9\)

\(\Rightarrow y_{max}=-\dfrac{23}{8}\) ; \(y_{min}=-39\)

6 tháng 11 2021

em cảm ơn cô/thầy ạ

9 tháng 10 2019

Mọi \(x_1;x_2\in\left(1;2\right)\)

G/s: \(x_1< x_2\)

Xét \(\frac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\frac{\left(-x_1^2+\left(m-1\right)x_1+2\right)-\left(-x_2^2+\left(m-1\right)x_2+2\right)}{x_1-x_2}\)

\(=\frac{-\left(x_1^2-x_2^2\right)+\left(m-1\right)\left(x_1-x_2\right)}{\left(x_1-x_2\right)}\)

\(=-\left(x_1+x_2\right)+m-1\)

Để hàm số nghịch biến thì \(\frac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}< 0\Leftrightarrow m+1< x_1+x_2< 2+2\)=> \(m< 3\)

24 tháng 12 2016

a)Vì x và y là 2 đại lượng tỉ lệ thuận nên ta có: \(y=kx\)

Khi x=-2 thì y=8 thay vào \(y=kx\) ta có:

\(8=k\cdot\left(-2\right)\Rightarrow k=8:\left(-2\right)=-4\)

Hệ số tỉ lệ của y đối với x là -4

b)\(y=-4x\left(1\right)\)

c)Khi x=6 thay vào (1) ta có:

\(y=-4\cdot6=-24\)

Vậy khi x=6 thì y=-24

 

 

24 tháng 12 2021

Bạn viết dưới dạng trực quan để mn hiểu câu hỏi nhé!

NV
14 tháng 4 2020

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng. Dấu "=" xảy ra khi \(x=y\)