Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b+c+d}{a+b-c+d}=\frac{a-b+c+d}{a-b-c+d}=\frac{\left(a+b+c+d\right)-\left(a-b+c+d\right)}{\left(a+b-c+d\right)-\left(a-b-c+d\right)}=\frac{2b}{2b}=1.\)
\(\Rightarrow a+b+c+d=a+b-c+d\)
\(\Rightarrow2c=0\Rightarrow c=0\)
a + b, b + c, c + a đều là các số hữu tỉ
=> 2(a + b + c) là số hữu tỉ
=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)
=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ
=> a, b, c đều là số hữu tỉ (đpcm)
Đặt a^2/c=x;b^2/a=y;c^2/b=z
a^2/c*b^2/a*c^2/y=x.y.z=1
c/a^2=; a/b^2=; a/c^2=
Ta có: x+y+z=1/x+1/y+1/z
x+y+z=xy+yz+zx/xyz=xy+xz+yz(1)
Lại có: (x-1)(y-1)(z-1)
=xyz-xy-yz-zx+x+y+z-1
=1-x-y-z+x+y+z-1 ( Do xyz=1 và xy+yz+zx=x+y+z)
=0
x-1, y-1 ,z-1 ít nhất 1 số bằng 0
Nếu x-1=0 x=1 a^2/c=1
a^2=c
Vậy....