Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
#)Giải :
Đặt \(A=a^2+b^2+c^2\)
Do tích a.b chẵn nên ta xét các trường hợp :
TH1 : Trong a và b có 1 số chẵn và 1 số lẻ
Giả sử a là số chẵn, còn b là số lẻ 2
=> a2 chia hết cho 4; b2 chia 4 dư 1 => a2 + b2 chia 4 dư 1
=> a2 + b2 = 4m + 1 (m thuộc N)
Chon c = 2m => a2 + b2 + c2 = 4m2 + 4m + 1 = (2m + 1)2 (thỏa mãn) (1)
TH2 : Cả a,b cùng chẵn
=> a2 + b2 chia hết cho 4 => a2 + b2 = 4n (n thuộc N)
Chọn c = n - 1 => a2 + b2 + c2 = n2 + 2n + 1 = (n + 1)2 (thỏa mãn) (2)
Từ (1) và (2) => Luôn tìm được số nguyên c thỏa mãn đề bài
Do a, b là số chẵn nên ta xét 2 trường hợp:
TH1: a chẵn, b lẻ => a2 + b2 = 4m + 1, khi đó chọn c có dạng 2m ta luôn có a2 + b2 + c2 = 4m2 + 4m + 1 = (2m + 1)2 (ĐPCM)
TH2 : a, b chẵn => a2 + b2 = 4n, khi đó chọn c có dạng n-1 ta luôn có a2 + b2 + c2 = n2 + 2n + 1 = (n+1)2 (ĐPCM)
\(~~~HD~~~\)
\(+,n=0\Rightarrow5^n+15=1+15=16=4^2\left(tm\right)\)
\(+,n=1\Rightarrow5^n+15=5+15=20\left(loại\right)\)
\(+,n\ge2\Rightarrow\hept{\begin{cases}5^n⋮25\\15⋮̸25\end{cases}}\Rightarrow\hept{\begin{cases}5^n+15⋮5\\5^n+15⋮25̸\end{cases}}\left(loại\right)\)
Vậy: n=0
bài 2
Cộng 2 vế của -4038.(1) + (2) ta được
\(a_1^2+a_2^2+...+a_{2019}^2-4038\left(a_1+a_2+...+a_{2019}\right)\le2019^3+1-4028.2019^2\)
\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}\)
\(\le2019^3+1-2019.2019^2-2019.2019^2\)
\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}+2019.2019^2\le1\)
\(\Leftrightarrow\left(a_1^2-4038a_1+2019^2\right)+...+\left(a_{2019}^2-4038a_{2019}+2019^2\right)\le1\)
\(\Leftrightarrow A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\le1\)
Do \(a_1;a_2;...;a_{2019}\in N\)nên \(A\in N\)
\(\Rightarrow\orbr{\begin{cases}A=0\\A=1\end{cases}}\)
*Nếu A = 0
Dễ thấy \(A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\ge0\forall a_1;a_2;...;a_{2019}\)
Nên dấu "=" xảy ra \(\Leftrightarrow a_1=a_2=a_3=...=a_{2019}=2019\)
*Nếu A = 1
\(\Leftrightarrow\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2=1\)(*)
Từ đó dễ dàng nhận ra trong 2019 số \(\left(a_1-2019\right)^2;\left(a_2-2019\right)^2;...;\left(a_{2019}-2019\right)^2\)phải tồn tại 2018 số bằng 0
Hay nói cách khác trong 2019 số \(a_1;a_2;a_3;...;a_{2019}\)phải tồn tại 2018 số có giá trị bằng 2019
Giả sử \(a_1=a_2=...=a_{2018}=2019\)
Khi đó (*)\(\Leftrightarrow\left(a_{2019}-2019\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}a_{2019}=2020\\a_{2019}=2018\end{cases}}\)
Thử lại...(tự thử nhé)
Vậy...
Bài 1 : Vì \(4^{2019}\)có cơ số là 4 , số mũ 2019 là lẻ nên có tận cùng là 4
Để \(4^{2019}+3^n\)có tận cùng là 7 thì \(3^n\)có tận cùng là 3
Mà n là số tự nhiên nên n = 1