K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

\(2^0+2^1+2^2+2^3+...+2^{2014}.\)

\(=1+\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+.....+\left(2^{2012}+2^{2013}+2^{2014}\right)\)

\(=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{2012}\left(1+2+2^2\right)\)

\(=1+2.7+2^4.7+.....+2^{2012}.7\)

\(=1+7\left(2+2^4+....+2^{2012}\right)\)

\(7\left(2+2^4+...+2^{2012}\right)⋮7\)\(\Rightarrow\)\(2^0+2^1+2^2+2^3+...+2^{2014}\)\(chia7\)\(dư1\)

18 tháng 3 2017

2A=2+2^2+2^3+...+2^2015

2A-A=2^2015-1

A=2^2015-1

2^3 đồng dư 1 mod 7

2^2015 đồng dư 1 mod 7

2^2015 chia hết cho 7

18 tháng 3 2017

ta có 2^0+2^1+2^2=7 => số dư trong phép chia là 0 

20 tháng 10 2016

A=(1+2)+(22+23)+..............+(22013+22014)

A=  3+22.(1+2)+...................+22013.(1+2)

A=3.1+22.3+......................+22013.3

A=3.(1+22........................+22013):7 

Vậy A chia 7 dư 3

28 tháng 10 2018

Ta có:

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)

\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)

Vậy \(A< \frac{3}{4}\)