K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
R
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
22 tháng 2 2019
1, Ta có 2009^2008 = (2009^2)^1004 = (.....1)^1004 = .....1
Vậy chũa số tận cùng của 2009^2008 là chữ số 1
NM
0
NM
1
T
18 tháng 1 2021
a) Ta có: \(3^{2021}=3^{2019}\cdot3^2=\left(3^3\right)^{673}\cdot3^2\equiv1.3^2=9\left(mod13\right)\)
Vậy số dư của \(3^{2021}\) cho 13 là 9.
b) \(2008^{2008}=\left(2008^2\right)^{1004}\equiv1^{1004}=1\) (mod 7)
Vậy số dư của $2008^{2008}$ cho $7$ là $1.$
P/s: Rất lâu rồi mình không giải toán đồng dư nên không chắc bạn nhé.
T
2
HJ
21 tháng 1 2017
Ta có : 1000^1000<A<1000^1+1000^2+.......+1000^999
100...000->(3000chữ số 0)<A<100100...1000->(3001chữ số 0)
=> 3 chữ số đầu tiên của A là 100
LT
0
1) \(3^{999}\equiv67\left(mod100\right)\)
2) \(2^{512}\equiv96\left(mod1000\right)\)