Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là ta có
a chia 11 dư 3 thì a+8+88chia hết cho 11 hay a+96 chia hết cho 11 ]a+96 thuộc BC(11,13
a chia 13 dư 8 thì a+8+91 chia hết cho13 hay a+96 chia hết cho 13]
11=11 13=13
BCNN(11,13)=11.13=143
B(143)=(0,143,286,...)
vì a có ba chữ số và nhỏ nhất nên a+96 nhỏ nhất có ba chữ số nên a+96=143 nên a=47(l) vậy a+96=286 nên a=190
vậy a=190
P/s: Mới học trên mạng cái thủ thuật máy tính cầm tay về cái này nên không chắc lắm.Tại mấy bữa nay giờ học máy tính cầm tay trên lớp bị trùng vào ngày học AVTC...=( Có gì sai đừng trách nha.
Ta có:\(45^1\equiv6\left(mod13\right)\)
\(45^2\equiv10\left(mod13\right)\)
....
\(45^5\equiv2\left(mod13\right)\)
Suy ra \(\left(45^5\right)^{200}\equiv2^{200}\left(mod13\right)\)
Tức là \(45^{1000}\) và \(2^{200}\) có cùng số dư khi chia cho 13. (1)
Ta có: \(2^2\equiv4\left(mod13\right)\)
\(2^3\equiv8\left(mod13\right)\)
\(2^4\equiv3\left(mod13\right)\)
......
\(2^8\equiv9\left(mod13\right)\)
.....
\(2^{12}\equiv1\left(mod13\right)\)
Suy ra \(\left(2^{12}\right)^{16}\equiv1^{16}\left(mod13\right)\Leftrightarrow2^{192}\equiv1\left(mod13\right)\)
Suy ra \(2^{192}.2^8\equiv9\left(mod13\right)\Leftrightarrow2^{200}\equiv9\left(mod13\right)\)
Suy ra 2200 và 9 có cùng số dư khi chia cho 13. (2)
Mà 9 : 13 dư 9. (3)
Kết hợp (1);(2);(3) ta có 45100 chia có 13 dư 9.
a) Ta có: \(3^{2021}=3^{2019}\cdot3^2=\left(3^3\right)^{673}\cdot3^2\equiv1.3^2=9\left(mod13\right)\)
Vậy số dư của \(3^{2021}\) cho 13 là 9.
b) \(2008^{2008}=\left(2008^2\right)^{1004}\equiv1^{1004}=1\) (mod 7)
Vậy số dư của $2008^{2008}$ cho $7$ là $1.$
P/s: Rất lâu rồi mình không giải toán đồng dư nên không chắc bạn nhé.
Lời giải:
$207\equiv -1\pmod {13}$
$\Rightarrow 207^{2016}\equiv (-1)^{2016}\equiv 1\pmod {13}$
Vậy $207^{2016}$ chia $13$ dư $1$
Áp dụng công thức về chia hết:\(\left(a-1\right)^{2n+1}=B\left(a\right)-1\)
a
Ta có:\(2^{100}=2\cdot\left(2^3\right)^{33}=2\cdot\left(9-1\right)^{33}=2\left[B\left(9\right)-1\right]=B\left(9\right)-2=B\left(9\right)+7\)
Chia 9 dư 7
b
Áp dụng công thức chia hết \(\left(a-1\right)^{2n}=B\left(a\right)+1\)
Lại có:\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left[B\left(25\right)-1\right]^{10}=B\left(25\right)+1\)
chia 25 dư 1