Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^1+2^2+2^3+...+2^{2016}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2015}+2^{2016}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2015}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2015}\right)⋮3\)
\(2^1+2^2+2^3+...+2^{2016}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
Đặt A=2+22+23+24+...+22016
- A=(2+22)+(23+24)+...+(22015+22016)
A=2(1+3)+23(1+2)+...22015(1+2)
A=2.3+23.3+...+22015.3
A=3.(2+23+...+22015)chia hết cho 3
A=(2+22+23)+(24+25+26)+...+(22014+22015+22016)
A=2(1+2+22)+24(1+2+22)+...+22014(1+2+22)
A=2.7+24.7+...+22014.7
A=7.(2+24+...+22016)chia hết cho 7
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
Đặt S=1+2+2^2+..........+2^2019
Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có 3 số hạng và thừa 1 số hạng như sau
S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)
S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)
S=1+2.7+2^4.7+.....+2^2017.7
S=1+7(2+2^4+2^2017) chia 7 dư 1
Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1