Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 36 = 729 chia 91 dư 1
Từ đó ta có
38 + 36 + 32010 = 36.32 + 36 + (36)335
Vậy số ban đâu chia 91 sẽ dư 11
Khi chia cho đa thức bậc 2 thì dư tối đa là bậc 1, giả sử đó là \(ax+b\)
\(\Rightarrow x^{2019}+x^{2018}+x+2018=\left(x^2-1\right).P\left(x\right)+ax+b\)
Trong đó \(P\left(x\right)\) là đa thức thương (ko cần quan tâm)
Thay lần lượt \(x=-1\) và \(x=1\) vào ta được:
\(\left\{{}\begin{matrix}2017=-a+b\\2021=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2019\end{matrix}\right.\)
Đa thức dư là \(2x+2019\)
Lời giải:
Vì $x^2-1$ là đa thức bậc 2 nên đa thức dư khi chia $x^{2019}+x^{2018}+x+2018$ cho $x^2-1$ phải có bậc nhỏ hơn 2.
Đặt đa thức dư cần tìm là $ax+b$
Ta có:
\(x^{2019}+x^{2018}+x+2018=Q(x)(x^2-1)+ax+b\) với $Q(x)$ là đa thức thương
Lần lượt thay $x=1,x=-1$ ta có:
\(\left\{\begin{matrix} 2021=a+b\\ 2017=-a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=2\\ b=2019\end{matrix}\right.\)
Vậy đa thức dư là $2x+2019$
Lời giải:
Ta có: \(19^2=361\equiv 10\pmod {27}\)
\(\Rightarrow 19^3=19^2.19\equiv 10.19\equiv 1\pmod {27}\)
Suy ra:
\(7^3=19\pmod {27}\Rightarrow 7^{9}\equiv 19^3\equiv 1\pmod {27}\)
Vậy \(19^3\equiv 7^9\equiv 1\pmod {27}\)
Khi đó:
\(19^{2008}+7^{2008}=(19^{3})^{669}.19+(7^9)^{223}.7\)
\(\equiv 1^{669}.19+1^{223}.7\equiv 19+7\equiv 26\pmod {27}\)
Vậy \(19^{2008}+7^{2008}\) chia $27$ dư $26$