Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số dư lớn nhất bao giờ cũng bé hơn số chia 1 đơn vi . Vậy số dư là 6
Số bị chia là :
7 x 6 + 6 = 48
Đáp số : 48
Gọi số tự hiên đó là x ta có
x chia 11 dư 3
=> x-3 chia hết cho 11
=> x-3 +11 chia hết cho 11
=> x+8 chia hết cho 11 (1)
x chia 7 dư 6
=> x-6 chia hết cho 7
=> x-6 +14 chia hết cho 7
=> x+8 chia hết cho 7 (2)
Từ (1) và (2)
=> x+8 chia hết cho 77
=> x chia 77 dư 69
KL
p:15 dư 7 và chia 6 dư4
=>p+8 sẽ chia hết cho 15 và 6
=>p+8=BC(15;6)
BCNN(15;6)=30
=>p+8=30*(k thuộc N*)
=>p chia 30 sẽ dư 22(30-8=22)
=>Số dư của phép chia đó là 22
a chia 7 dư 4 => a+3 chia hết cho 7
a chia 9 dư 6 => a+3 chia hết cho 9
Do đó: a+3 chia hết cho cả 7 và 9
mà ƯCLN (7; 9) = 1
nên a+3 chia hết cho (7.9) => a+3 chia hết cho 63
Vậy số dư của phép chia a chia 63 là: 63-3=60
Số a chia cho 3 có dư là 2 nên a + 1 sẽ chia hết cho 3
Số a chia cho 7 có dư là 6 nên a + 1 sẽ chia hết cho 7
Vậy a + 1 chia hết cho BCNN của 3 và 7, tức là (a + 1) ⋮ 21
⇒ a chia cho 21 có dư là 20
BẠn Nguyễn Châu tuấn kiệt là sai rồi
Ờ hình như bạn Nguyễn Châu Tuấn kiệt làm đúng! hì hì
\(2^3\equiv1\left(mod7\right)\)
\(\Rightarrow\left(2^3\right)^{668}.2^2\equiv1^{668}.2^2\left(mod7\right)\)
\(\Rightarrow2^{2006}\equiv4\left(mod7\right)\)
-Vậy: \(2^{2006}\) chia 7 dư 4
\(2^{2006}=\left(2^{17}\right)^{118}=131072^{118}\)
Ma \(131072\equiv4\left(mod7\right)\)=>\(131072^{118}=4\left(mod7\right)\)
=> 131072^118 hay 2^2006 chia 7 du 3