Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left| { - \sqrt 7 } \right| = \sqrt 7 ;\,\,\,\,\left| {\,52,\left( 1 \right)} \right| = \,52,\left( 1 \right);\,\,\,\,\,\left| {0,68} \right| = 0,68;\,\,\,\,\,\,\left| { - \frac{3}{2}} \right| = \frac{3}{2};\,\,\,\,\,\left| {2\pi } \right| = 2\pi .\)
Ta có: \(3,\left( {45} \right) = \frac{{38}}{{11}}\); \( - 45 = \frac{{ - 45}}{1};\,\,0 = \frac{0}{1}\) do đó:
Các số hữu tỉ là: \(\frac{2}{3};\,3,\left( {45} \right);\, - 45;\,0\).
Các số vô tỉ là: \(\sqrt 2 ;\, - \sqrt 3 ;\,\pi \).
Chú ý:
Số thập phân vô hạn tuần hoàn cũng là số hữu tỉ.
Số đối của số: 5,12 là -5,12
Số đối của số: \(\pi \) là \( - \pi \)
Số đối của số: \( - \sqrt {13} \) là \(\sqrt {13} \).
Chú ý:
Muốn tìm số đối của một số ta chỉ cần đổi dấu của nó.
Ta có \(\sqrt {3} = 1,732...\) nên là số thập phân vô hạn không tuần hoàn nên \(\sqrt 3 \) là số vô tỉ.
Các số hữu tỉ là: \(12;\,\,\frac{2}{3};\,\,3,\left( {14} \right);\,\,0,123\,\,\,\,\)
a) Làm tròn đến hàng trăm
\(\begin{array}{l}1000\pi = 3141,5926.... \approx 3100\,\\\, - 100\sqrt 2 = - 141,4213... \approx - 100\end{array}\)
b) Làm tròn đến hàng phần nghìn
\(\begin{array}{l} - \sqrt 5 \approx 2,23606... \approx 2,236;\,\,\\\,6,\left( {234} \right) \approx 6,234\end{array}\)
a) Ta có: \(\sqrt 2 \notin \mathbb{Q};\pi \in \mathbb{I};15 \in \mathbb{R}\)
Vậy cách viết \(\pi \in \mathbb{I}; 15 \in \mathbb{Q}\) là đúng
b) Số đối của 5,08(299) là -5,08(299)
Số đối của -\(\sqrt 5 \) là \(\sqrt 5 \)
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
\(\sqrt{16}=4;\dfrac{2}{3}=0,\left(6\right);\Omega=3,14;-\sqrt{5}\simeq-2,24\)
\(-5,6< -2,23< 0\)
=>\(-5,6< -\sqrt{5}< 0\)(1)
\(0< \dfrac{2}{3}< 3,14< 4\)
=>\(0< \dfrac{2}{3}< \Omega< \sqrt{16}\)(2)
Từ (1) và (2) suy ra \(-5,6< -\sqrt{5}< 0< \dfrac{2}{3}< \Omega< \sqrt{16}\)
+)\(\sqrt 8 = 2,82842... \approx 2,828\) vì chữ số ngay bên phải hàng phần nghìn của 2,82842… là 4 < 5
+)\(12,\left( {91} \right) = 12,9191.... \approx 12,919\) vì chữ số ngay bên phải hàng phần nghìn của 12, 9191… là 1 < 5
Số đối của các số \( - \sqrt 5 ;\,\,\,\,\,12,\left( 3 \right);\,\,\,\,0,4599;\,\,\,\,\,\sqrt {10} ;\,\,\,\, - \pi \) lần lượt là:
\(\sqrt 5 ;\,\,\,\,\, - 12,\left( 3 \right);\,\,\,\, - 0,4599;\,\,\,\,\, - \sqrt {10} ;\,\,\,\,\pi \).