K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a) Ta có: \(\sqrt 2  \notin \mathbb{Q};\pi \in \mathbb{I};15 \in \mathbb{R}\)

Vậy cách viết \(\pi \in \mathbb{I}; 15 \in \mathbb{Q}\) là đúng

b) Số đối của 5,08(299) là -5,08(299)

Số đối của -\(\sqrt 5 \) là \(\sqrt 5 \)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)      \(\sqrt 3  \in \mathbb{Q}\) sai.

Sửa lại: \(\sqrt 3  \notin \mathbb{Q}\)

b)      \(\sqrt 3  \in \mathbb{R}\) đúng.

c)      \(\frac{2}{3} \notin \mathbb{R}\) sai.

Sửa lại: \(\frac{2}{3} \in \mathbb{R}\)

d)      \( - 9 \in \mathbb{R}\) đúng.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

\(a)\sqrt 2  \approx 1,1412... \in I;\,\,\,\,\,b)\sqrt 9  = 3 \notin I;\,\,\,\,c)\,\pi  \approx 3,141... \in I;\,\,\,\,\,d)\sqrt 4  = 2 \in \mathbb{Q}\)

Vậy các phát biểu a,c,d đúng.

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Nếu \(a \in \mathbb{N}\) thì \(a \in \mathbb{Q}\) => Đúng

b) Nếu \(a \in \mathbb{Z}\) thì \(a \in \mathbb{Q}\) => Đúng

c) Nếu \(a \in \mathbb{Q}\) thì \(a \in \mathbb{N}\) => Sai. Vì a là số hữu tỉ thì chưa chắc a là số tự nhiên.

d) Nếu \(a \in \mathbb{Q}\) thì \(a \in \mathbb{Z}\) => Sai. Vì a là số hữu tỉ thì chưa chắc a là số nguyên.

e) Nếu \(a \in \mathbb{N}\) thì \(a \notin \mathbb{Q}\) => Sai. Vì các số tự nhiên là các số hữu tỉ

g) Nếu \(a \in \mathbb{Z}\) thì \(a \notin \mathbb{Q}\) => Sai. Vì các số nguyên là các số hữu tỉ

10 tháng 5 2017

2 \(\in\) Q−2........Q 1 \(\in\) R1......R 2 \(\in\) I2......I

315 \(\notin\) Z−315......Z 9 \(\in\) N9........N N \(\subset\) R

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a) Đúng vì \(0,25{\rm{ }} = \frac{{25}}{{100}} = \frac{1}{4}\) là số hữu tỉ

b) Đúng vì \(\frac{{ - 6}}{7}\) là số hữu tỉ

c) Sai vì \( - 235 = \frac{{ - 235}}{1}\) là số hữu tỉ.

Chú ý: Một số nguyên cũng là một số hữu tỉ.

Vậy các khẳng định đúng là a và b.

9 tháng 6 2017

a) \(3^3\)

b)\(2^8\)

c) \(2^7\)

d) \(3^1\)

22 tháng 6 2017

a) 9.33.\(\dfrac{1}{81}\) .32 = 32. 33.\(\dfrac{1}{3^4}\) . 32 = 33

b) 4. 25: \(\) (23.\(\dfrac{1}{16}\))= 22. 25: 23. \(\dfrac{1}{2^4}\) = 27: \(\dfrac{1}{2}\) = 27. 2= 28

c) 32. 25. \(\left(\dfrac{2}{3}\right)^2\) = 32. 25. \(\dfrac{2^2}{3^2}\) = 25. 22 = 27

d) \(\left(\dfrac{1}{3}\right)^2\) .\(\dfrac{1}{3}\) . 92 = \(\dfrac{1}{9}.\dfrac{1}{3}\). 92 = \(\dfrac{9}{3}\) = 31

18 tháng 4 2017

3 ∈ Q

3 \(\in\) R

3 \(\notin\) I

-2,53 \(\in\) Q

0,2(35) \(\notin\) I

N ⊂ Z

I ⊂ R.

18 tháng 8 2021

a,3 ∈ Q

b,3  R

c,3  I

d,-2,53  Q

e,0,2(35)  I

g,N ⊂ Z

h,I ⊂ R.

29 tháng 5 2017

chọn D

11 tháng 6 2017

Câu trả lời đúng là D

CÂU LẠC BỘ TOÁN HỌC CHỦ NHIỆM: PHAN NGỌC THANH TRÂM ĐỀ BÀI: I. PHẦN LÝ THUYẾT: 1. Số hữu tỉ Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b \ne 0\) và được kí hiệu là \(\mathbb Q\) 2. Biểu diễn số hữu tỉ trên trục số Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó. 3. So...
Đọc tiếp

CÂU LẠC BỘ TOÁN HỌC

CHỦ NHIỆM: PHAN NGỌC THANH TRÂM

ĐỀ BÀI:

I. PHẦN LÝ THUYẾT:

1. Số hữu tỉ

Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

2. Biểu diễn số hữu tỉ trên trục số

Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó.

3. So sánh số hữu tỉ

Để so sánh hai số hữu tỉ \(x,y\) ta làm như sau:

- Viết \(x,y\) dưới dạng phân số cùng mẫu dương.

\(x = \dfrac{a}{m} ; y = \dfrac{b}{m} ( m>0)\)

- So sánh các tử là số nguyên \(a\) và \(b\)

Nếu \(a> b\) thì \(x > y\)

Nếu \(a = b\) thì \(x=y\)

Nếu \(a < b\) thì \(x < y\).

4. Chú ý

- Số hữu tỉ lớn hơn \(0\) gọi là số hữu tỉ dương

- Số hữu tỉ nhỏ hơn \(0\) gọi là số hữu tỉ âm

- Số \(0\) không là số hữu tỉ dương, cũng không là số hữu tỉ âm

II. PHẦN BÀI TẬP:

A. Trắc nghiệm:

Câu 1: Định nghĩa số hữu tỉ?

A. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

B. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b = 0\) và được kí hiệu là \(\mathbb Q\)

C. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb N, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

D. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb R, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

Câu 2: Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ \(\dfrac{3}{-4}\)

A.\(- \dfrac{12}{15}\)

B. \(- \dfrac{20}{8}\)

C. \(-\dfrac{18}{12}\)

D. \(-\dfrac{15}{20}\)

Câu 3: Tập hợp số hữu tỉ được kí hiệu là:

A. \(\mathbb Q\)

B. \(\mathbb N\)

C. \(\mathbb R\)

D. \(\mathbb Z\)

Câu 4: Khẳng định nào sau đây là đúng:

A. Số \(0\) không là số hữu tỉ dương

B Số \(0\) không là số hữu tỉ âm

C. Số \(0\) không là số hữu tỉ dương, cũng không là số hữu tỉ âm

D. Số \(0\) là số hữu tỉ

Câu 5: Cách viết nào sau đây là đúng:

A. \(\dfrac{3}{2} \in \mathbb Q\)

B. \(\dfrac{2}{3} \in \mathbb Z\)

C. \(-\dfrac{9}{2} \notin \mathbb Q\)

D. \(-6 \in \mathbb N\)

Câu 6: Số nào sau đây là số hữu tỉ dương:

A.\(\dfrac{-2}{-3}\)

B. \(\dfrac{-2}{5}\)

C. \(\dfrac{-5}{15}\)

D. \(\dfrac{-2}{15}\)

II.TỰ LUẬN:

Câu 1: So sánh các số hữu tỉ:

a) \(x = \dfrac{2}{-7}\) và \(y = \dfrac{-3}{11}.\)

b) \(x = \dfrac{-213}{300}\) và \(y = \dfrac{18}{-25}.\)

c) \(x = -0,75\) và \(y = \dfrac{-3}{4}.\)

Câu 2:

a) Biểu diễn các số hữu tỉ sau trên trục số: \(\dfrac{2}{5};\dfrac{{- 4}}{5};\dfrac{7}{5}\)

b) Hãy sắp xếp các số hữu tỉ sau theo thứ tự tăng dần: \(\dfrac{9}{{11}};\dfrac{{ - 30}}{{ - 40}};0;\dfrac{{ - 14}}{{18}};\dfrac{{ - 12}}{{ - 8}}\)

Câu 3: Cho số hữu tỉ \(x=\dfrac{a - 4}{5}\), với giá trị nào của a thì:

a) x là số dương?

b) x là số âm?

c) x không là số dương cũng không là số âm?

Câu 4: Cho số hữu tỉ \(x=\dfrac{a + 17}{a}\) ( \(a ≠ 0\) ). Với giá trị nguyên nào của a thì x là số nguyên?

Sưu tầm và biên soạn: PCN: Nguyễn Thành Trương




2
5 tháng 8 2019

Má ơi con đăng rồi

5 tháng 8 2019

:v