K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Áp dụng công thức cos =

ta có cos =

=> cos = = = => = 450

Vậy số đo góc giữa hai đường thẳng \(d_1\)\(d_2\) là 45 độ.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có vectơ pháp tuyến của hai đường thẳng \({d_1}\)và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}}  = \left( {1; - 2} \right),\overrightarrow {{n_2}}  = \left( {3; - 1} \right)\)

Ta có \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.3 + \left( { - 2} \right).( - 1)} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)

b) Ta có vectơ pháp tuyến của hai đường thẳng \({d_1}\) và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}}  = \left( {5; - 1} \right),\overrightarrow {{n_2}}  = \left( {1;5} \right)\)

Ta có \({a_1}{a_2} + {b_1}{b_2} = 5.1 + ( - 1).5 = 0\)

Suy ra \(\left( {{d_1},{d_2}} \right) = 90^\circ \)

c) Ta có vectơ chỉ phương của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt là \(\overrightarrow {{u_1}}  = \left( {2; 4} \right),\overrightarrow {{u_2}}  = \left( {1;2} \right)\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.1+4.2} \right|}}{{\sqrt {{2^2} + {{ { 4} }^2}} \sqrt {{1^2} + {{{ 2}}^2}} }} = 1 \Rightarrow \left( {{d_1},{d_2}} \right) = 0^\circ \)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Vecto pháp tuyến của đường thẳng \({d_1}\) là: \(\overrightarrow {{n_1}}  = \left( {2; - 1} \right)\)

Vecto pháp tuyến của đường thẳng \({d_2}\) là: \(\overrightarrow {{n_2}}  = \left( {1; - 3} \right)\)

Ta có:  \(\cos \left( {{d_1},{d_2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {2.1 + \left( { - 1} \right).\left( { - 3} \right)} \right|}}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\)

Vậy \(\left( {{d_1},{d_2}} \right) = {45^o}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 1\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.1 + ( - 1).1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2}} }} = 0 \Rightarrow {d_1} \bot {d_2}\)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau tại điểm có tọa độ \(( - 3; - 1)\)

b) Đường thẳng \({d_1}\) có phương trình tổng quát là: \({d_1}:2x - y + 1 = 0\)

Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - 3y + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{5}\\y = \frac{3}{5}\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.\left( { - 1} \right) + 1.( - 3)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) cắt nhau tại điểm có tọa độ \(\left( { - \frac{1}{5};\frac{3}{5}} \right)\) và góc giữa chúng là \(45^\circ \)

c) Đường thẳng \({d_1}\) và \({d_2}\) lần lượt có phương trình tổng quát là:

\({d_1}:3x + y - 11 = 0,{d_2}:x - 3y + 8 = 0\)

Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}3x + y - 11 = 0\\x - 3y + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = \frac{7}{2}\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {3.1 + 1.( - 3)} \right|}}{{\sqrt {{3^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = 0 \Rightarrow \left( {{d_1},{d_2}} \right) = 90^\circ \)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc tại điểm có tọa độ \(\left( {\frac{5}{2};\frac{7}{2}} \right)\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta thấy hai đường thẳng này song song, nên khoảng cách giữa chúng là khoảng cách từ một điểm bất kì từ đường thẳng này tới đường thẳng kia

Chọn điểm \(A\left( {0;4} \right) \in {d_2}\), suy ra \(d\left( {{d_1},{d_2}} \right) = d\left( {A,{d_1}} \right) = \frac{{\left| {4.0 - 3.4 + 2} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 2\)

Vậy khoảng cách giữa hai đường thẳng \({d_1}:4x - 3y + 2 = 0\) và \({d_2}:4x - 3y + 12 = 0\) là 2

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {1; - 1} \right),\overrightarrow {{n_2}}  = \left( {1;1} \right)\)

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.1 + ( - 1).1 = 0\) nên \(\overrightarrow {{n_1}}  \bot \overrightarrow {{n_2}} \)

Giải hệ phương trình \(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x =  - 3\\y =  - 1\end{array} \right.\)

Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - 3; - 1} \right)\)

 b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {5; - 2} \right),\overrightarrow {{n_2}}  = \left( {5; - 2} \right)\)

\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(1;3)\) thuộc \({d_1}\), thay tọa độ của A vào phương trình \({d_2}\), ta được \(5.1 - 2.3 + 9 = 8 \ne 0\), suy ra A không thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song

c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3;1} \right),\overrightarrow {{n_2}}  = \left( {3;1} \right)\)

Suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(2;5)\) thuộc \({d_1}\), thay tọa độ của A vào phương trình \({d_2}\), ta được \(3.2 + 5 - 11 = 0\), suy ra A thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) trùng nhau

2 tháng 5 2021

ta có:nd1=(1;-2)

         nd2=(3;-1)

Có a là góc giữa hai đường thẳng d1 và d2:

⇒Cos a+\(\left|cos\left(nd1;nd2\right)\right|\)=\(\dfrac{\left|3+2\right|}{\sqrt{1^2+2^2}.\sqrt{3^2+1^2}}\)

=\(\dfrac{5}{5\sqrt{2}}\)=\(\dfrac{\sqrt{2}}{2}\)

⇒Cos a=\(\dfrac{\sqrt{2}}{2}\)=45 độ

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {1; - 5} \right),\overrightarrow {{n_2}}  = \left( {10;2} \right)\)

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.10 + ( - 5).2 = 0\) nên \(\overrightarrow {{n_1}}  \bot \overrightarrow {{n_2}} \)

Giải hệ phương trình \(\left\{ \begin{array}{l}x - 5y + 9 = 0\\10x + 2y + 7 = 10\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x =  - \frac{3}{{52}}\\y = \frac{{93}}{{52}}\end{array} \right.\)

Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - \frac{3}{{52}};\frac{{93}}{{52}}} \right)\)

b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3; - 4} \right),\overrightarrow {{n_2}}  = \left( {3, - 4} \right)\)

\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(1;1)\) thuộc \({d_2}\), thay tọa độ của A vào phương trình \({d_1}\), ta được \(3.1 - 4.1 + 9 = 8 \ne 0\), suy ra A không thuộc đường thẳng \({d_1}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song

c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3; - 4} \right),\overrightarrow {{n_2}}  = \left( {6; - 8} \right)\)

Ta có \({a_1}{b_2} - {a_2}{b_1} = 3.( - 8) - ( - 4).6 = 0\)suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(1;1)\) thuộc \({d_2}\), thay tọa độ của A vào phương trình \({d_1}\), ta được \(\left\{ \begin{array}{l}1 = 5 + 4t\\1 = 4 + 3t\end{array} \right. \Leftrightarrow t =  - 1\), suy ra A thuộc đường thẳng \({d_1}\)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) trùng nhau

4 tháng 3 2019

Với d1: 4x – 2y + 6 = 0 có vecto pháp tuyến là: n1(4;-2)

và d2: x – 3y + 1 = 0 có vecto pháp tuyến là: n2(1;-3) ; ta có :

Giải bài 7 trang 81 SGK hình học 10 | Giải toán lớp 10

8 tháng 4 2017

ta có vtpt của d1 : n=(1;2) và vtpt của d2: n'=(2;-1)

ta có cos\(\alpha\)=\(\dfrac{|\overrightarrow{n}\times\overrightarrow{n'}|}{\overrightarrow{|n|}\times|\overrightarrow{n'}|}\)=\(\dfrac{\left(1\times2\right)-\left(2\times1\right)}{\sqrt{1^2+2^2}\times\sqrt{\left(-1\right)^2+2^2}}\)=0

=>\(\alpha\)=\(90^0\)

8 tháng 4 2017

Lời giải

Hệ số góc d1: k1=-1/2

hệ số góc d2: k2 =2

\(k_1.k_2=-1\) => d1 vuông góc với d2

góc d1 và d2 =90 độ