Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để a35b chia hết cho 45 => a35b chia hết cho 5,9
=> b là 5 hoặc 0 mà a, 3, 5, b khác nhau => b = 0
Để a350 chia hết cho 9
=> a + 3 + 5 + 0 = a + 8 => a = 1 chia hết cho 9
Vậy số đó là 1350.
Chúc em học tốt!!!
Bài giải
Vì số A35B chia hết cho 45 nên số đó chia hết cho 9 và 5. Mà số đó chia hết cho 5 nên B là : 0.
Vì số đó chia hết cho 9 nên a là 1.
Vậy số đó là : 1350.
Số chia hết cho 45 là số chia hết cho 9 và 5
Số này phải có chữ số tận cùng bằng 0 hoặc 5 và tổng các chữ số của nó chia hết cho 9
Nếu b = 0 thì a = 9 - (3 + 5) = 1
Nếu b = 5 thì a = 18 - (3 + 5 + 5) = 5
Số cần tìm là 1350 ; 5355
Chia hết cho 45 là chia hết cho 5 và 9
b = 0 (không thể bằng 5 vì trùng chữ sô 5)
a = 1 để tổng các chữ số 1 + 3 + 5 + 0 = 9
Vậy số cần tìm là : 1350
chia hết cho 45 thì chia hết cho 5 và 9 vì 5x9=45
a35b=5355;1350
a35b chia hết cho 45 <=> a35b chia hết cho 5 và 9
Muốn a35b chia hết cho 5 thì b phải bằng 0 hoặc 5
a35b chia hết cho 9 <=> a + 3 + 5 + b chia hết cho 9
* Nếu b = 5, thì :
a355 chia hết cho 9 < loại > ( vì để cho là 4 chữ số khác nhau )
* Nếu b = 0, thì :
a350 chia hết cho 9 <=> a + 3 + 5 + 0 chia hết cho 9
<=> a + 8 chia hết cho 9
=> \(a\in\left\{1\right\}\)< chọn >
Vậy số đó là 1350
tìm 1 số có4 chữ số khác nhau có dạng a35b biết số đó chia hết cho 45
a35b chia hết cho 45 <=> a35b chia hết cho 5 và 9
Muốn a35b chia hết cho 5 thì b phải bằng 0 hoặc 5
a35b chia hết cho 9 <=> a + 3 + 5 + b chia hết cho 9
* Nếu b = 5, thì :
a355 chia hết cho 9 < loại > ( vì để cho là 4 chữ số khác nhau )
* Nếu b = 0, thì :
a350 chia hết cho 9 <=> a + 3 + 5 + 0 chia hết cho 9
<=> a + 8 chia hết cho 9
=> \(a\in\left\{1\right\}\)< chọn >
Vậy số đó là 1350
nhé !
1, Ta có: 45 = 5 x 9
Số đó chia hết cho 45 có nghĩa là số đó chia hết cho cả 5 và 9
Suy ra chữ số hàng đơn vị chỉ có thể là số 0.
Để số a350 chia hết cho 9 thì a phải là chữ số 1
Số cần tìm là 1350
2, Ta có: abcde x 9 = edcba. Suy ra: a = 1 (vì nếu a > 1 thì tích sẽ có 6 chữ số) và e = 9
Từ đó ta có: 1bcd9 x 9 = 9dcb1
Ta được: b ≤ 1 vì b x 9 phải không có nhớ
* Với b = 1 thì d = 7 (vì 7 x 9 + 8 nhớ có chữ số tận cùng là 1)
Ta được: 11c79 x 9 = 97c11 => c=0 hoặc 9 (vì 97c11 chia hết cho 9) (loại)
* Với b = 0 thì d = 8 (vì 8 x 9 + 8 nhớ có chữ số tận cùng là 0)
Ta được: 10c89 x 9 = 98c01 => c=0 hoặc 9 (vì 98c01 chia hết cho 9)
Chọn được giá trị c = 9
abcde = 10989
2.Tìm số abcde, biết abcde x 9 = edcba
Do tích edcba có 5 chữ số nên a=1 và e=9
Ta được: 1bcd9
x 9
9dcb1
b ≤ 1 vì bx9 phải không có nhớ.
*. Với b=1 thì d=7 (vì 7x9+8 nhớ có chữ số tận cùng là 1).
Ta được: 11c79 x 9 = 97c11 => c=0 hoặc 9 (vì 97c11 chia hết cho 9) (loại)
*. Với b=0 thì d=8. (vì 8x9+8 nhớ có chữ số tận cùng là 0).
Ta được: 10c89 x 9 = 98c01 => c=0 hoặc 9 (vì 98c01 chia hết cho 9)
Chọn được giá trị c=9.
abcde = 10989
Thử lại: 10989 x 9 = 98901
\(45=5x9\) mà 5 và 9 là 2 số đồng thời chỉ chia hết cho 1 và chính nó nên
\(\overline{a35b}⋮45\) khi \(\overline{a35b}\) đồng thời chia hết cho 5 và 9
\(\overline{a35b}⋮5\Rightarrow b=0\) (do \(\overline{a35b}\) là số có 4 chữ số khác nhau)
\(\Rightarrow\overline{a35b}=\overline{a350}⋮9\Rightarrow a+3+5=a+8⋮9\Rightarrow a=1\)
\(\Rightarrow\overline{a35b}=1350\)
số đó là 1350 hoặc 5355
k mik nha
Để số a45b chia hết cho 2 và chia 5 dư 3
Thì b chỉ có thể bằng 8
Nếu b bằng 8 thì a458 chia hết cho 9
=> (a + 4 + 5 + 8) chia hết cho 9
=> (a + 17) chia hết cho 9 => a = 1