Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C E F
Theo đề ta có: \(AE+ED=AD\)
Và: \(\frac{AE}{DE}=\frac{3}{4}\Rightarrow\frac{AE}{AD}=\frac{3}{7}\)
Lại có: \(EF//AB//DC\)
Áp dụng định lí talet trong hình thang \(ABCD\) ta suy ra được:
\(\frac{BF}{BC}=\frac{AE}{AD}=\frac{3}{7}\)
Vậy .............
Gợi ý: Giả sử \(c\le d\)
Ta có: \(0< a+b\le18\)
\(\Leftrightarrow0< cd\le18\)
\(\Rightarrow c^2\le cd\le18\)
\(\Rightarrow0< c\le4\)
Thế c = 1 vào ta được
\(\hept{\begin{cases}a+b=d\\1+d=ab\end{cases}}\)
\(\Rightarrow1+a+b=ab\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=2\)
\(\Rightarrow\left(a-1,b-1\right)=\left(1,2;2,1\right)\)
\(\Rightarrow\left(a,b\right)=\left(2,3;3,2\right)\)
\(\Rightarrow\hept{\begin{cases}d=4\\d=2\end{cases}\left(l\right)}\)
Tương tự các trường hợp còn lại
Vì q=a2q=a2 nên ta có : q=1;4,9q=1;4,9
Với q=1q=1 ta có : abcd¯¯¯¯¯¯¯¯¯¯=dcba¯¯¯¯¯¯¯¯¯¯→a=b=c=dabcd¯=dcba¯→a=b=c=d
Mà abcd¯¯¯¯¯¯¯¯¯¯abcd¯ có dạng bình phương 1 số nguyên nên ta thử với các số có dạng xxxx¯¯¯¯¯¯¯¯¯¯¯=y2 (y∈Z)xxxx¯=y2 (y∈Z). Phương trình này vô nghiệm nên trường hợp này loại.
Với q=4q=4 ta có : abcd¯¯¯¯¯¯¯¯¯¯=4dcba¯¯¯¯¯¯¯¯¯¯abcd¯=4dcba¯
Có d chẵn, a≥9a≥9 nên d=2→a=8;9d=2→a=8;9
Tiếp tục thử với a=8; a=9a=8; a=9 bằng cách tách số hạng ta không tìm được số nào thỏa mãn.
Với q=9q=9 ta có a=9; d=1a=9; d=1 Tách tương tự không tìm được số nào thỏa mãn.
Nếu có chắc thử sai nhưng hướng làm là thế
\(4^{a.b.c.d}=\left(4^a\right)^{bcd}=5^{bcd}=\left(5^b\right)^{cd}=6^{cd}=\left(6^c\right)^d=7^d=8\)
=> \(2^{2abcd}=8=2^3\Rightarrow2abcd=3\Rightarrow abcd=\frac{3}{2}\)
\(TDB:\)
\(4^a=8\Leftrightarrow a=1,5\)
\(5,5^b=8\Rightarrow b=1,219\)
\(6,6^c=8\Rightarrow c=1,101\)
\(7,7^d=8\Rightarrow d=1,018\)
\(\Rightarrow a.b.c.d=1,5\times1,219\times1,101\times1,018=2,049\)
ax4=d --> a=1 hoặc 2, a không bằng 1 vì 4xd chẵn, nên a sẽ bằng 2, vậy d=8
ta có 2bc8 x 4 = 8cb2
Nếu cx4+3 < 10 (không bằng 10 dc vì nó lẻ) ta sẽ có: cx4+3=b và bx4=c (2 cái mâu thuẫn)
vậy cx4+3 > 10, ta sẽ có bx4+(cx4+3-b)/10=c --> 6c-3=39b, do b là hàng đơn vị của cx4+3 nên b lẻ--> b=1 và c=7
Vậy abcd là 2178
abcd=2178
Lúc đầu không tính post cách giải nhưng thấy bạn dưới làm nhức mắt quá
nhìn ở dưới tới đoạn 2bc8
4xa=d (4x2=8)
=> 4xb=c ( c<9, b#a)=>b=1 => c=7