Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có phải thế này ko bn
Tìm Max A ( a#0, b#0, a,b là c/s)
sao cho A và A đều là số cp
Coi vẻ khó nhỉ
Gọi số phải tìm là abcd = n²
=> số viết theo thứ tự ngược lại là dcba = m² với m,n là các số tự nhiên và m>n
Do abcd và dcba đều ≤ 9999 và ≥ 1000 nên:
1000 ≤ m², n² ≤ 9999 => 32 ≤ m,n ≤ 99 (vì m,n € N)
abcd và dcba đều chính phương nên: a,d € {1,4,6,9} (các số cp tận cùng chỉ có thể là 1,4,6 hoặc 9) và a<d (♣)
Do dcba chia hết cho abcd nên: m² chia hết cho n² hay m chia hết cho n.
Đặt m = k.n với k € N và k ≥ 2: dcba = k². abcd
Ta có:
m = k.n ≤ 99
32 ≤ n
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3
Như vậy: k = 2 hoặc 3
+Nếu k = 2 thì: dcba = 4.abcd (♥)
Theo (♣) a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với (♣) đc: d= 4 hoặc d =6
Với d=4: (♥) <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: (♥) <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd (♦)
a chỉ có thể là 1 và d = 9. Khi đó: (♦) <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
Mình tìm hiểu thì biết số chính phương là số bình phương của 1 số nguyên.
2 số cần tìm :
9801 = 99^2
và 1089 = 33^2
Tính không làm đâu. Do làm biếng mà thấy không ai giúp hết nên để t giúp vậy
Gọi số chính phương cần tìm là abcd ta có
abcd = 1000a + 100b + 10c + d = X2
(a+1)(b+1)(c+1)(d+1) = 1000(a+1) + 100(b+1) + 10(c+1) + (d+1) =Y2
=> Y2 - X2 = (Y - X)(Y + X) = 1111 = 101 \(\times\)11
\(\Rightarrow\hept{\begin{cases}Y-X=1\\Y+X=1111\end{cases}OR\hept{\begin{cases}Y-X=11\\Y+X=101\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}Y=556\\X=555\end{cases}\left(loai\right)or\hept{\begin{cases}Y=56\\X=45\end{cases}\left(nhan\right)}}\)
Vậy số cần tìm là \(45^2=2025\)
Đặt A=m2
A+11111111=B=n2
=>m2+11111111=n2
=>n2-m2=11111111
=>(m-n).(m+n)=11.1010101=1111.10001
Vì 9999999<m2<100000000
=>3161<m<10000
Vì 9999999<n2<100000000
=>3161<n<10000
=>6322<m+n<20000
Và m+n>m-n
=>m+n=10001,m-n=1111
=>m=(10001+1111):2=5556
=>A=m2=55562=30869136
Vậy A=30869136
Gọi số chính phương phải tìm là \(A=m^2=\overline{aabb}\) và \(a,b\)là các chữ số,\(a\ne0\)
Ta có:\(A=\overline{aabb}=\overline{aa00}+\overline{bb}=11a\cdot100+11b=11\left[99a+\left(a+b\right)\right]\left(1\right)\)
Để A là số chính phương thì \(99a+\left(a+b\right)⋮11\)
\(\Rightarrow a+b⋮11\)vì \(99a⋮11\)
Mà \(1\le a+b\le18\)
\(\Rightarrow a+b=11\)
Thay vào \(\left(1\right)\) ta được:\(m^2=11\left(99a+11\right)=11^2\left(9a+1\right)\)
\(\Rightarrow9a+1\)là số chính phương
Thử a lần lượt từ 1 đến 9 theo điều kiện trên ta được a=7 thỏa mãn khi đó b=4.
\(\Rightarrow\)Số chính phương cần tìm là \(7744\)
Gọi số chính phương cần tìm là n2n2
Có:
:n2=100A+bn2=100A+b ( A là số trăm,1≤b≤991≤b≤99)
Theo bài ra ta có 100A là số chính phương
⇒A⇒A là số chính phương
Đặt A=x2A=x2
Có: n2>100x2n2>100x2
⇒n>10x⇒n>10x
⇒n≥10x+1⇒n≥10x+1
⇒n2≥(10x+1)2⇒n2≥(10x+1)2
⇒100x2+b≥100x2+20x+1⇒100x2+b≥100x2+20x+1
⇒b≥20x+1⇒b≥20x+1
Mà b≤99b≤99
⇒20x+1≤99⇒20x+1≤99
⇒x≤4⇒x≤4
Ta có :
n2=100x2+b≤1600+99n2=100x2+b≤1600+99
⇒n2=100x2+b≤1699⇒n2=100x2+b≤1699
Chỉ có 412=1681(tm)412=1681(tm)
Vậy số chính phương lớn nhất phải tìm là 412=1681