K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2015

(abcd) là kí hiệu số có 4 chữ số abcd. 
từ: (ab)-(cd)=1 => (ab) =1+(cd) 
giả sử n^2 = (abcd) = 100(ab) + (cd) = 100( 1+(cd)) + (cd) = 101(cd) +100  
đk : 31<n<100 
=> 101(cd) = n^2 -100 = (n+10)(n-10) 
vì n< 100 => n-10 < 90 và 101 là số nguyên tố nên: n+10 = 101 => n =91 
thử lại: số chính phương 91^2 = 8281 thỏa đk 82-81=1

tick đi bạn

19 tháng 10 2015

Số thỏa mãn là: 82-81=1

4 tháng 7 2015

Hình như hết người lớp 9 bây giờ rồi bạn ơi ! Bạn đợi thầy cô Quản lý vào làm cho !

4 tháng 7 2015

`abcd- `cd=`ab <=>1000a+100b+ 10c+d-10c-d=10a+b <=> 1000a+100b-10a-b=0 <=> 990a+99b=0 <=> 99(10a+b)=0

=> 10a+b=0 <=> b=-10a

mình chỉ biết làm đến đây thôi @@ thiếu dữ kiện quá

17 tháng 10 2016

Tính không làm đâu. Do làm biếng mà thấy không ai giúp hết nên để t giúp vậy

Gọi số chính phương cần tìm là abcd ta có

abcd = 1000a + 100b + 10c + d = X2

(a+1)(b+1)(c+1)(d+1) = 1000(a+1) + 100(b+1) + 10(c+1) + (d+1) =Y2

=> Y2 - X2 = (Y - X)(Y + X) = 1111 = 101 \(\times\)11

\(\Rightarrow\hept{\begin{cases}Y-X=1\\Y+X=1111\end{cases}OR\hept{\begin{cases}Y-X=11\\Y+X=101\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}Y=556\\X=555\end{cases}\left(loai\right)or\hept{\begin{cases}Y=56\\X=45\end{cases}\left(nhan\right)}}\)

Vậy số cần tìm là \(45^2=2025\)

16 tháng 10 2016

số chính phương mà kêu toán lp 9 ak 

3 tháng 11 2015

Đặt A=m2

A+11111111=B=n2

=>m2+11111111=n2

=>n2-m2=11111111

=>(m-n).(m+n)=11.1010101=1111.10001

Vì 9999999<m2<100000000

=>3161<m<10000

Vì 9999999<n2<100000000

=>3161<n<10000

=>6322<m+n<20000

Và m+n>m-n

=>m+n=10001,m-n=1111

=>m=(10001+1111):2=5556

=>A=m2=55562=30869136

Vậy A=30869136

3 tháng 11 2015

Mình không thể kết bạn với cậu được vì kết bạn hết 25 người rồi

8 tháng 1 2021

Gọi số chính phương cần tìm là \(\overline{abcd}\left(0\le b,c,d\le9;1\le a\le9;a,b,c,d\inℕ\right)\)

Ta dễ có: \(1000\le\overline{abcd}\le9999\Rightarrow\sqrt{1000}\le\sqrt{\overline{abcd}}\le\sqrt{9999}\Rightarrow32\le\sqrt{\overline{abcd}}\le99\)suy ra căn bậc hai của số \(\overline{abcd}\)là số tự nhiên có hai chữ số.

Đặt \(\sqrt{\overline{abcd}}=\overline{mn}\left(m,n\inℕ;0\le n\le9;3\le m\le9\right)\)

Theo đề thì chữ số hàng đơn vị của số cần tìm là số nguyên tố nên \(d\in\left\{2;3;5;7\right\}\)mà số chính phương không có tận cùng bằng \(\left\{2;3;7\right\}\)nên d = 5 do đó n = 5 (Vì số chính phương có tận cùng bằng 5 thì căn bậc hai của nó cũng tận cùng bằng 5)

Lúc này ta được: \(\sqrt{\overline{abc5}}=\overline{m5}\)

Ta có đánh giá quen thuộc rằng số chính phương chia 3 thì hoặc dư 0 hoặc dư 1 do đó \(m+5\)chia 3 dư 0 hoặc dư 1 (theo đề thì căn bậc hai của số cần tìm có tổng các chữ số là số chính phương)

Xét từng trường hợp thì \(\overline{m5}\in\left\{45;55;75;85\right\}\)nhưng chỉ có số 45 có tổng các chữ số là số chính phương (9) nên ta chọn số 45\(\Rightarrow\overline{abcd}=45^2=2025\)

Vậy số chính phương có 4 chữ số cần tìm là 2025