K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

Mình nghĩ đề này của bạn nên thêm điều kiện khi cộng vào mỗi chữ số của nó 1 đơn vị ta vẫn luôn được 1 số có 4 chữ số thì bài toán chắc sẽ dễ dàng giải quyết hơn đấy nhỉ!

Gọi số cần tìm là \(x^2=\overline{abcd}\) \(\left(a,b,c,d< 9\&\inℕ\right)\)

Theo đề bài khi cộng mỗi chữ số của nó thêm 1 đơn vị thì ta vẫn được 1 số chính phương nên đặt:

\(y^2=\overline{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

\(\Rightarrow\overline{abcd}+1111=y^2\)

\(\Leftrightarrow x^2+1111=y^2\Leftrightarrow y^2-x^2=1111\)

\(\Leftrightarrow\left(y-x\right)\left(y+x\right)=1111=11\cdot101=1\cdot1111\) 

Dễ nhận thấy \(y+x>y-x>0\) nên ta xét các TH sau:

Nếu \(\hept{\begin{cases}y-x=11\\y+x=101\end{cases}}\Rightarrow\hept{\begin{cases}x=45\\y=56\end{cases}\left(tm\right)}\Rightarrow\overline{abcd}=2025\)

Nếu \(\hept{\begin{cases}y-x=1\\y+x=1111\end{cases}}\Rightarrow\hept{\begin{cases}x=555\\y=556\end{cases}}\Rightarrow ktm\)

Vậy số cần tìm là 2025 

23 tháng 1 2021

Gọi số cần tìm là a\(^2\), số mới được tạo thành b\(^2\)( a,b là số tự nhiên ) .

Theo đề bài , ta có :

\(b^2-a^2=1111\)( vì thêm mỗi chữ số 1 đơn vị )

\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=1111=1111.1=101.11\)

Vì b > a nên b + a có thể bằng 1111 hoặc 101 , còn b - a chỉ có thể bằng 1 hoặc 11

Giải ra , ta được \(a=555,b=556\)( loại vì số cần tìm là số có 4 chữ số ) và \(a=45,b=56\)( thỏa mãn )

Vậy số cần tìm là \(45^2=2025\)

* Nguồn : https://cunghoctot.vn/forum/topic/nhien-la-so-chinh-phuong-co-4-chu-so

1 tháng 4 2018

gọi số đó là abcd (0<a\(\le9,0\le b,c,d\le9\))

theo bài ra ta có: \(\hept{\begin{cases}abcd=k^2\\\left(a+1\right)\left(b+3\right)\left(c+5\right)\left(d+3\right)=h^2\end{cases}}\left(k,h\varepsilonℕ;31< k,h\le99\right)\)

\(\Rightarrow\hept{\begin{cases}1000a+100b+10c+d=k^2\\1000\left(a+1\right)+100\left(b+3\right)+10\left(c+5\right)+\left(d+3\right)=h^2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}1000a+100b+10c+d=k^2\\1000a+100b+10c+d+1353=h^2\end{cases}}\)

\(\Rightarrow h^2-k^2=1353\)

Ta thấy (h-k)>(h+k) \(\forall h,k\varepsilonℕ^∗\)

\(\Rightarrow\left(h-k\right)\left(h+k\right)=1\cdot1353=3\cdot451=11\cdot123=33\cdot41\)

Xét \(\hept{\begin{cases}h-k=1\\h+k=1353\end{cases}}\Leftrightarrow\hept{\begin{cases}h=677\\k=676\end{cases}\left(loai\right)}\)

xét \(\hept{\begin{cases}h-k=3\\h+k=451\end{cases}}\Leftrightarrow\hept{\begin{cases}h=227\\k=224\end{cases}}\left(loai\right)\)

Xét \(\hept{\begin{cases}h-k=11\\h+k=123\end{cases}}\Leftrightarrow\hept{\begin{cases}h=67\\k=56\end{cases}}\left(nhan\right)\)

Xét \(\hept{\begin{cases}h-k=33\\h+k=41\end{cases}}\Leftrightarrow\hept{\begin{cases}h=37\\k=4\end{cases}}\left(loai\right)\)

Vậy k=56=>abcd=\(k^2=3136\)

2 tháng 4 2016

Số cần tìm chỉ có duy nhất 1 số đó là 3136 nha bạn

k đúng cho mk

15 tháng 3 2015

Gọi số chính phương cần tìm là abcd

=> đặt abcd = n2

theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương 

=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số

ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)

                                       = (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3 

                                       = abcd + 1353                                           (*)

=> m2 = n+ 1353  => m2 - n =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123

TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn

TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn

vậy số cần tìm là 562 = 3136

12 tháng 7 2015

Gọi số chính phương cần tìm là abcd

=> đặt abcd = n2

theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương 

=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số

ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)

                                       = (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3 

                                       = abcd + 1353                                           (*)

=> m2 = n+ 1353  => m2 - n =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123

TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn

TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn

vậy số cần tìm là 562 = 3136

Bài 11: Một phân số có tử số nhỏ hơn mẫu số 8 đơn vị. Nếu thêm 2 đơn vị vào tử số và bớt đi ở mẫu số 3 đơn vị thì phân số mới bằng 3/4. Tìm phân số đã cho Bài 12: một số tự nhiên lẻ có hai chữ số và chia hết cho 5. Hiệu của số đó và chữ số hàng chục của nó bằng 68. Tìm số đó.Bài 13: Một số có hai chữ số . Tỉ số giữa chữ số hàng và chữ số hàng đơn vị là 3/2....
Đọc tiếp

Bài 11: Một phân số có tử số nhỏ hơn mẫu số 8 đơn vị. Nếu thêm 2 đơn vị vào tử số và bớt đi ở mẫu số 3 đơn vị thì phân số mới bằng 3/4. Tìm phân số đã cho 

Bài 12: một số tự nhiên lẻ có hai chữ số và chia hết cho 5. Hiệu của số đó và chữ số hàng chục của nó bằng 68. Tìm số đó.

Bài 13: Một số có hai chữ số . Tỉ số giữa chữ số hàng và chữ số hàng đơn vị là 3/2. Nếu viết thêm chữ số 0 vào giữa hai chữ số của nó thì số mới có ba chữ số lớn hơn số đã cho 540 đơn vị. Tìm số đã cho 

Bài 15: Tìm số tự nhiên có hai chữ số . Chữ số hàng đơn vị gấp hai lần chữ số hàng chục. Nếu thêm chữ số 1 xen vào giữa hai chữ số của số đó thì được số mới lớn hơn số ban đầu 270 đơn vị. Tìm số ban đầu.

Bài 14: Tìm số tự nhiên có hai chữ số biết rằng : Tổng hai chữ số của số đó là 12. Nếu đổi chỗ hai chữ số của số đó thì được số mới có hai chữ số lớn hơn số ban đầu 36 đơn vị.

Bài 16: Một ô tô đi từ thành phố Hồ Chí Minh đến Vũng Tàu với vận tốc 40 km/h . Sau 2 giờ nghỉ tại Vũng Tàu , xe ô tô đó lại quay về Thành phố Hồ Chí Minh với vận tốc 30km/h . Tổng thời gian cả đi và về là 10 giờ 45 phút ( kể cả thời gian nghỉ tại Vũng Tàu ). Tính quãng đường từ thành phố Hồ Chí Minh đến Vũng Tàu 

4
14 tháng 3 2018

lắm thê snùy làm soa nổi . VVV:

14 tháng 3 2018

CTV đâu nhường cho các cậu

2 tháng 8 2023

 Bài toán tương đương với tìm số tự nhiên N có 4 chữ số sao cho N và \(N+1353\) đều là các SCP có 4 chữ số. Bạn chỉ cần đặt \(\left\{{}\begin{matrix}N=n^2\\N+1353=m^2\end{matrix}\right.\), trừ theo vế thu được \(\left(m-n\right)\left(m+n\right)=1353\). Tới đây bạn chặn \(0< m-n< m+n\) kèm theo \(32\le n\le92\) và \(49\le m\le99\) rồi chia trường hợp, đối chiếu điều kiện là xong.