Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
2.|x+1|-3=5
2.|x+1| =8
|x+1| =4
=>x+1=4 hoặc x+1=-4
<=>x= 3 hoặc -5
Bài 3
A=2/n-1
Để A có giá trị nguyên thì n là
2 phải chia hết cho n-1
U(2)={1,2,-1,-2}
Vậy A là số nguyên khi n=2;3;0;-1
k mk nha. Chúc bạn học giỏi
Thank you
bài 1 :
\(2\cdot|x+1|-3=5\)
\(2\cdot|x+1|=5+3\)
\(2\cdot|x+1|=8\)
\(|x+1|=8\div2\)
\(|x+1|=4\)
\(x=4-3\)
\(x=3\Rightarrow|x|=3\)
bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)
TH1:
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)
\(\Rightarrow n=5\)
TH2
\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)
\(\Rightarrow4=\frac{4-1}{1+2}=3\)
\(\Rightarrow n=3\)
\(n\in\left\{5;3\right\}\left(n\in Z\right)\)
Bài 3 có 2 trường hợp là \(A=1\)và \(A=2\)
TH1:
\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)
\(1=\frac{2}{2+1}=3\)
\(\Rightarrow n=3\)
TH2 :
\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)
\(2=\frac{2}{1+1}=2\)
\(\Rightarrow n=2\)
vậy \(\Rightarrow n\in\left\{3;2\right\}\)
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n ∈ Z để A là phân số
Để A là phân số thì n+1;n-2 ∈ Z ; n-2 khác 0
<=> n ∈ Z; n >2
Vậy A là phân số <=> n ∈ Z; n>2
b)Tìm n∈Z để A∈Z
A ∈ Z <=> n+1 chia hết cho n-2
<=>n-2+3 chia hết cho n-2
<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)
<=>n-2 ∈ Ư(3)={1;-1;3;-3}
<=>n ∈ {3;1;5;-1}
Vậy để A ∈ Z thì n ∈ {3;1;5;-1}
c)Tìm N∈Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\)
Chứng minh B tối giản
1c) Tìm n∈Z để A lớn nhất:
Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)
=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất
<=>n-2 nhỏ nhất; n-2>0; n-2∈Z
<=>n-2=1
<=>n=3
Vậy A lớn nhất <=> n-3
Để A thuộc luôn tồn tại mà n thuộc Z suy ra n+8 chia hết cho 2n-5
suy ra (n+8).2 chia hết cho n+8 hay2n+16
Suy ra (2n+16)-(2n-5) chian hết cho 2n-5
suy ra 21 chia hết cho 2n-5suy ra 2n-5 thuộc Ư(21)={-21;;21;3;-3;7;-7;1;-1}
suy ra 2n thuộc{-16;26;8;2;12;-2;6;4}
suy ra n thuộc{-8;13;4;1;6;-1;3;2}
Vậy n thuộc{-8;13;4;1;6;-1;3;2}
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
\(b,n+4⋮n+2\)
\(\Rightarrow n+2+2⋮n+2\)
\(n+2⋮n+2\)
\(\Rightarrow2⋮n+2\)
\(\Rightarrow n+2\inƯ\left(2\right)=\left\{1;2\right\}\)
\(\Rightarrow n\in\left\{-1;0\right\}\) mà n thuộc N
=> n = 0
d, \(2n+6⋮n+3\)
\(\Rightarrow2\left(n+3\right)⋮n+3\)
\(n+3⋮n+3\Rightarrow2\left(n+3\right)⋮n+3\)
\(\Rightarrow\) n = bao nhiêu cx đc miễn là n thuộc N
a) n - 2 \(\in\)Ư(6) = {-1;1;2;-2;3;-3;6;-6}
Sau đó b thay số vào n - 2 = .. để tìm n nha :)
b) (n + 2) \(⋮\)(n - 3)
=> (n-3+5) \(⋮\)(n-3)
Mà (n-3) \(⋮\)(n-3)
=> (n-3) \(\in\)Ư(5) = {-1;1;5;-5}
Rồi cũng thay số như câu a
=>n-2 thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}
rồi lập bản thử từng TH nhé