K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

Để A thuộc luôn tồn tại mà n thuộc Z suy ra n+8 chia hết cho 2n-5

   suy ra (n+8).2 chia hết cho n+8 hay2n+16

Suy ra (2n+16)-(2n-5) chian hết cho 2n-5

suy ra 21 chia hết cho 2n-5suy ra 2n-5 thuộc Ư(21)={-21;;21;3;-3;7;-7;1;-1}

                                                 suy ra 2n thuộc{-16;26;8;2;12;-2;6;4}

                                                suy ra n thuộc{-8;13;4;1;6;-1;3;2}

Vậy n thuộc{-8;13;4;1;6;-1;3;2}

                                        

18 tháng 6 2018

a) Điều kiện xác định: n khác 4

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)

Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)

\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)

Vậy .............

b) \(n\in\left\{-2;-4\right\}\)

c) \(n\in\left\{-2;-1;3;5\right\}\)

d) \(n\in\left\{0;-2;2;-4\right\}\)

e) \(n\in\left\{0;2;-6;8\right\}\)

(Bài này có 1 bạn hỏi rồi bạn nhé!!!)

Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0   <=> n khác 7

b) Với n = 7 thì mẫu số bằng 0  => phân số không tồn tại

c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)

Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)

Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)

13 tháng 7 2020

Ta có :

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)

Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)

a) 2 hoặc -1

b)M={-3;-2;0;1;3;4;5}

23 tháng 6 2017

a, \(A=\frac{7}{n-3}\)

Để \(\frac{7}{n-3}\in Z\)thì \(7⋮n-3\Leftrightarrow n-3\inƯ\left(7\right)=\left\{\text{±}1;\text{±}7\right\}\)

Ta có bảng sau:

n - 3-1-717
n2-4410

Vậy \(n\in\left\{-4;2;4;10\right\}\)để\(\frac{7}{n-3}\in Z\)

b,\(B=\frac{13}{2n-5}\)

Để \(\frac{13}{2n-5}\in Z\)thì \(13⋮2n-5\Leftrightarrow2n-5\inƯ\left(13\right)=\left\{\text{±}1;\text{±}13\right\}\)

Ta có bảng sau:

2n - 5-1-13113
2n4-8618
n2-439

Vậy \(n\in\left\{-4;2;3;9\right\}\)để\(\frac{13}{2n-5}\in Z\)

c, \(C=\frac{-6}{3n+2}\)

Để \(\frac{-6}{3n+2}\in Z\)thì \(-6⋮3n+2\Leftrightarrow3n+2\inƯ\left(-6\right)=\left\{\text{±}1;\text{±}2;\text{±}3;\text{±}6\right\}\)

Ta có bảng sau:

3n + 2-1-2-3-61236
3n-3-4-5-8-1014
n-1\(\frac{-4}{3}\)\(\frac{-5}{3}\)\(\frac{-8}{3}\)\(\frac{-1}{3}\)0\(\frac{1}{3}\)\(\frac{4}{3}\)

Vậy \(n\in\left\{\frac{-8}{3};\frac{-5}{3};\frac{-4}{3};\frac{-1}{3};-1;0;\frac{1}{3};\frac{4}{3}\right\}\)để \(\frac{-6}{3n+2}\in Z\)

mà \(n\in Z\)

Vậy \(n\in\left\{-1;0\right\}\)để\(\frac{-6}{3n+2}\in Z\)

24 tháng 6 2017

a,Để \(A\in Z\)

\(\Rightarrow\)\(\frac{7}{n-3}\in Z\)

\(\Rightarrow\)n-3\(\in\)Ư(7)

n-3 \(\in\){1;-1;7;-7}

n\(\in\){4;2;10;-4}

Vậy n\(\in\){4;2;10;-4}

b,Để \(B\in Z\)

\(\Rightarrow\frac{13}{2n-5}\in Z\)

\(\Rightarrow\)2n-5\(\in\)Ư(13)

2n-5\(\in\){1;-1;13;-13}

2n\(\in\){6;4;18;-8}

n\(\in\){3;2;9;-4}

Vậy n\(\in\){3;2;9;-4}

c,Để \(C\in Z\)

\(\Rightarrow\frac{-6}{3n+2}\in Z\)

\(\Rightarrow\)3n+2\(\in\)Ư(-6)

3n+2\(\in\){1;-1;2;-2;3;-3;6;-6}

n\(\in\){-1;0}

Vậy n \(\in\){-1;0}

27 tháng 3 2020

a

Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)

b

A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)

\(\Rightarrow\frac{5}{2n-1}\inℤ\)

\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)

\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)

c

\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)