Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có
\(\left\{{}\begin{matrix}3n+1⋮2n+3\\2n+3⋮2n+3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}6n+2⋮2n+3\\6n+9⋮2n+3\end{matrix}\right.\)
=> 7\(⋮\) 2n + 3
Do n \(\in\) Z nên 2n + 3 \(\in\) Z
=> 2n + 3 \(\in\) Ư(7) ; 2n + 3 \(⋮̸\) 2
Ta có bảng
n | 2n + 3 | So với điều kiện n\(\in\) Z |
-1 | 1 | Thỏa mãn |
2 | 7 | Thỏa mãn |
-2 | -1 | Thỏa mãn |
-5 | -7 | Thỏa mãn |
Vậy n \(\in\) {-1;2;-2;5} là giá trị cần tìm
a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)
\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)
b.Tách tương tự nha
\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)
vậy với mọi x thuộc N đều t/m
b) tương tự nha
1. 2n-3 ⋮ n+1
⇒2n+2-5 ⋮ n+1
⇒2(n+1)-5 ⋮ n+1
Do n∈Z
⇒n+1 ∈ Ư(-5)={-1,1,-5,5}
⇒\(\left[{}\begin{matrix}n-1=-1\\n-1=1\\n-1=-5\\n-1=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=2\\n=-4\\n=6\end{matrix}\right.\)
Vậy x∈{0,2,-4,6}
2. Ta có:
x-y-z=0 ⇒\(\left\{{}\begin{matrix}x=y+z\\y=x-z\\z=x-y\end{matrix}\right.\)
Thay vào biểu thức ta được:
\(B=\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1+\frac{x-z}{z}\right)\)
⇒\(B=\frac{x-x+y}{x}.\frac{y-y-z}{y}.\frac{z+x-z}{z}\)
⇒\(B=\frac{y.\left(-z\right).x}{x.y.z}=\frac{\left(-1\right)xyz}{xyz}=-1\)
Vậy biểu thức B có giá trị là -1
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
\(\Leftrightarrow-x^3-x⋮x^2-2\)
\(\Leftrightarrow-x^3+2x-3x⋮x^2-2\)
\(\Leftrightarrow-3x^2⋮x^2-2\)
\(\Leftrightarrow x^2-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{1;-1;2;-2\right\}\)
\(A=\dfrac{6n+3-2}{2n+1}=3-\dfrac{2}{2n+1}\)
Để A max thì 2/2n+1 min
mà n nguyên
nên 2n+1=-1
=>2n=-2
=>n=-1
a) 2n + 1 + 12 -2n =13
6-n(ư)13 = -1; 1; -13 ; 13
n = 7; 19
b) tương tự, k làm dc mk sẽ làm tiếp
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)
\(=5n^2+5n⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=\left(6n^2+30n+n+5\right)-\left(6n^2-3n+10n-5\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10⋮2\)
\(2n-3⋮n+1\Rightarrow2\left(n+1\right)-5⋮n+1\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{0;2;-4;6\right\}\)
Bài giải
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1
=> 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
* TH1: n+1=1 => n=0 thuộc Z
* TH2: n+1=1 => n=-2 thuộc Z
*TH3: n+1=5 => n=4 thuộc Z
* TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
Vậy n thuộc {0;-2;4;6}
~ Học tốt ~ K cho mk nha. Thanks.