Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 6100 - 1 = (6 . 6 . 6 ..... 6) - 1 = [(...6) . (...6) . (...6) ..... (...6)] - 1 = (...6) - 1 = ...5 \(⋮\) 5
b, 2120 - 1110 = (21 . 21 . 21 . 21 . 21..... 21) - (11 . 11 . 11 . 11 ..... 11) = [(...1) . (...1) . (...1) . (...1).....(...1)] - [(...1) . (...1) . (...1) . (...1).....(...1)] = (...1) - (...1) = ....0 \(⋮\) 2; \(⋮\) 5
3. Tìm n thuộc N để
a.27-5n chia hết cho n
do 5n chia hết cho n nên 27 phải chia hết cho n
n thuộc N nên n =1,3,9,27
và 5n< hoặc =27
suy ra n=1 hoặc 3
n=1 thỏa mãn
n=3 thỏa mãn
suy ra 2 nghiệm
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
theo bài ra ta có :
(11a + 5b) chia hết cho 2
<=>(10a+a)+(4b+b) chia hết cho 2
Mà 10a và 4b chia hết cho
=>(a+b) chia hết cho 2
2-
Ta có:
a+5b chia hết cho 7
=>10.(a+5b) chia hết cho 7
=>10a+50b chia hết cho 7
Nếu 10a+b chia hết cho 7 thì 10a+50b-(10a+b) bchia hết cho 7
=>49b chia hết cho 7 (đúng)
Vì vậy 10a+b chia hết cho 7
CM điều ngược lại đúng
Ta có:
10a+b chia hết cho 7
=>5.(10a+b) chia hết cho 7
=>50a+5b chia hết cho 7
Nếu a+5b chia hết cho 7 thì (50a+5b)-(a+5b) chia hết cho 7
=>49a chia hết cho 7 (đúng)
Vậy điều ngược lại đúng