Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A(x)+B(x)=(x^3+3x^2-4x-12)+(-2x^3+3x^2+4x+1)
=x^3+3x^2-4x-12-2x^3+3x^2+4x+1
=(x^3-2x^3)+(3x^2+3x^2)-(4x-4x)-(12-1)
=-x^3+6x^2-11
b) A(x)-B(x)=(x^3+3x^2-4x-12)-(-2x^3+3x^2+4x+1)
=x^3+3x^2-4x-12+2x^3-3x^2-4x-1
=(x^3+2x^3)+(3x^2-3x^2)-(4x+4x)-(12+1)
=3x^3-8x-13
c) Thay x=2 vào 2 đa thức A(x) và B(x) ta có
A(2)=2^3+3*2^2-4*2-12
=8+12-8-12
=0
B(2)=-2*2^3+3*2^2+4*2-1
=-16+(-4)+8-1
=-13
Vậy x=2 là nghiệm của đa thức A(x) và không là nghiệm của đa thức B(x)
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)
a: f(x)=-2x^7+4x^3-2x^2+3
g(x)=-5x^7-2x^3+x
b: f(x)+g(x)
=-2x^7+4x^3-2x^2+3-5x^7-2x^3+x
=-7x^7+2x^3-2x^2+x+3
f(x)-g(x)
=-2x^7+4x^3-2x^2+3+5x^7+2x^3-x
=3x^7+6x^3-2x^2-x+3
c: f(0)=0+0+0+3=3
=>x=0 ko là nghiệm của f(x)
g(0)=0+0+0=0
=>x=0 là nghiệm của g(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
Bài làm:
Ta có: \(A\left(x\right)=x^3+3x^2-4x=x\left(x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\\x+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-4\end{cases}}\)là nghiệm của A(x)
Vậy x = 0 là nghiêm của A(x)
Mà tại x = 0 thì giá trị của B(x) là:
\(B\left(0\right)=-2.0^3+3.0^2+4.0+1=1\)
=> x = 0 không là nghiệm của B(x)
Bạn viết đề rõ hơn được không ạ ?