K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

a) A(x)+B(x)=(x^3+3x^2-4x-12)+(-2x^3+3x^2+4x+1)

                  =x^3+3x^2-4x-12-2x^3+3x^2+4x+1

                  =(x^3-2x^3)+(3x^2+3x^2)-(4x-4x)-(12-1)

                  =-x^3+6x^2-11

b) A(x)-B(x)=(x^3+3x^2-4x-12)-(-2x^3+3x^2+4x+1)

                 =x^3+3x^2-4x-12+2x^3-3x^2-4x-1

                 =(x^3+2x^3)+(3x^2-3x^2)-(4x+4x)-(12+1)

                 =3x^3-8x-13

c) Thay x=2 vào 2 đa thức A(x) và B(x) ta có

     A(2)=2^3+3*2^2-4*2-12

           =8+12-8-12

           =0

      B(2)=-2*2^3+3*2^2+4*2-1          

            =-16+(-4)+8-1

            =-13

Vậy x=2 là nghiệm của đa thức A(x) và không là nghiệm của đa thức B(x)

14 tháng 5 2018

a ) Ta có :  \(A\left(x\right)=x^3+3x^2-4x-12\)

\(\Rightarrow A\left(2\right)=2^3+3.2^2-4.2-12\)

\(\Rightarrow A\left(2\right)=8+3.4-8-12\)

\(\Rightarrow A\left(2\right)=8+12-8-12\)

\(\Rightarrow A\left(2\right)=0\)

Vậy \(x=2\)là nghiệm của đa thức \(A\left(x\right)\)

\(B\left(x\right)=-2x^3+3x^2+4x+1\)

\(\Rightarrow B\left(2\right)=-2.2^3+3.2^2+4.2+1\)

\(\Rightarrow B\left(2\right)=-2.8+3.4+8+1\)

\(\Rightarrow B\left(2\right)=-16+12+8+1\)

\(\Rightarrow B\left(2\right)=5\ne0\)

Vậy \(x=2\)không là nghiệm của đa thức \(B\left(x\right)\)

b )     Tự làm nhé 

Chúc bạn học tốt !!! 

14 tháng 5 2018

a)   \(A\left(2\right)=2^3+3.2^2-4.2-12=0\)

=> \(x=2\)là nghiệm của đa thức  A(x)

     \(B\left(2\right)=-2.2^3+3.2^2+4.2+1=5\)

=>   \(x=2\)không là nghiệm của đa thức  B(x)

b)   \(A\left(x\right)+B\left(x\right)=\left(x^3+3x^2-4x-12\right)+\left(-2x^3+3x^2+4x+1\right)\)

                                    \(=-x^3+6x^2+13\)

    \(A\left(x\right)-B\left(x\right)=\left(x^3+3x^2-4x-12\right)-\left(-2x^3+3x^2+4x+1\right)\)

                                 \(=x^3+3x^2-4x-12+2x^3-3x^2-4x-1\)

                                 \(=3x^3-8x+11\)

11 tháng 4 2019

a) Tính:

A(x) + B(x) = (5x - 2x4 + x3 - 5 + x2) + (-x4 + 4x2 - 3x3 + 7 - 6x)

                  = 5x - 2x4 + x3 - 5 + x2 + -x4 + 4x2 - 3x3 + 7 - 6x

                  = (5x - 6x) + (-2x4 - x4) + (x3 - 3x3) + (-5 + 7) + (x2 + 4x2)

                  = -x - x4 - 2x3 + 2 + 5x2 

A(x) - B(x) + C(x) = (5x - 2x4 + x3 - 5x + x2) - (-x4 + 4x2 - 3x3 + 7 - 6x) + (x + x3 - 2)

                            = 5x - 2x4 + x3 - 5 + x2 - -x4 - 4x2 + 3x3 - 7 + 6x + x + x3 - 2

                            = (5x + 6x + x) + [-2x4 + (-x4)] + (x3 + 3x3 + x3)  + (x2 - 4x2) + (-5 - 7 - 2)

                            = 12x - 3x+ 5x3 - 3x2 - 14

B(x) - C(x) - A(x) = (-x4 + 4x2 - 3x3 + 7 - 6x) - (x + x3 - 2) - (5x - 2x4 + x3 - 5 + x2

                           = -x4 + 4x2 - 3x3 + 7 - 6x - x - x3 + 2 - 5x + 2x4 - x3 + 5 - x2

                          = (-x4 + 2x4) + (4x2 - x2) + (-3x3 - x3 - x3) + (7 + 2 + 5) + (6x - x - 5x)

                          = x4 + 3x2 - x3 + 14 

C(x) - A(x) - B(x) = (x + x3 - 2) - (5x - 2x4 + x3 - 5 + x2) - (-x4 + 4x2 - 3x3 + 7 - 6x)

                           = x + x3 - 2 - 5x + 2x4 - x3 + 5 - x2 - -x4 - 4x2 + 3x3 - 7 - 6x

                           = (x - 5x - 6x) + (x3 - x3 + 3x3) + (-2 + 5 - 7) + (5x - 6x) + (-x2 - 4x2)

                           = -10x + 3x3 - 4 - x - 5

11 tháng 4 2019

Với x=1 thì đa thức A(x) có giá trị là:\(5\cdot1-2\cdot\left(1\right)^4+1^3-5+1^2\)

\(=5-2+1-5+1=0\)

=> x=1 là nghiệm.

Với x=1 thì đa thức B(x) có giá trị là:\(-\left(1\right)^4+4\cdot1^2-3\cdot1^3+7-6\cdot1\)

\(=-1+4-3+7-6=1\)

=> x=1 không phải là nghiệm.

Suy ra điều cần chứng minh

30 tháng 6 2020

a) \(P\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)

\(P\left(x\right)=\left(2x^4-x^4\right)+\left(5x^3-x^3-4x^3\right)+\left(3x^2-x^2\right)+1\)\

\(P\left(x\right)=x^4+2x^2+1\)

b) \(P\left(1\right)=1^4+2.1^2+1=1+2+1=4\)

\(P\left(-2\right)=\left(-2\right)^4+2\left(-2\right)^2+1=16+8+1=25\)

c) Đặt \(P\left(x\right)=x^4+2x^2+1=0\Rightarrow x^4+2x^2=-1\)

\(x^4;2x^2\ge0\forall x\Rightarrow x^4+2x^2\ge0\Rightarrow x^4+2x^2\ne-1\)

Suy ra P(x) vô nghiệm

24 tháng 7 2019

a) \(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5+5x^2-10+x\)

\(=\left(2x^4-x^4\right)-5x^3+\left(5x^2-6x^2\right)+x+\left(5-10\right)\)

\(=3x^4-5x^3-x^2+x-5\)

\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)

\(=\left(6x^4-3x^4\right)-x^3+\left(3x-4x\right)+\left(6-7\right)\)

\(=x^4-x^3-x-1\)

24 tháng 7 2019

b) \(A\left(x\right)+B\left(x\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)+\left(x^4-x^3-x-1\right)\)

\(=5x^4-6x^3-x^2-6\)

 \(A\left(x\right)-B\left(x\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)-\left(x^4-x^3-x-1\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)-x^4+x^3+x+1\)

\(=2x^4-4x^3-x^2+2x-4\)

a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)

                    =6x3+3x2-4x+14

b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x

=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x

c/ P(x)=-6x=0

=> x=0 là nghiệm đa thức P(x)

d/ Ta có: x2+4x+5

=x.x+2x+2x+2.2+1

=x(x+2)+2(x+2)+1

=(x+2)(x+2)+1

=(x+2)2+1

Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)

=> Đa thức trên vô nghiệm.

24 tháng 4 2017

a, A(x) = -x3 -2x2  + 5x +7   

    B(x) = -3x+ x3 +10x-7

b, P(x) = -3x4 +8x2 +5x

    Q(x) = 3x- 2x2 -12x2 -5x + 14

c, Thay x=-1 vào đa thức P(x) :

P(-1) = -3.(-1)4 + 8.(-1)+ 5.(-1)

         =-3 + 8 - 5

         =0

=> x = (-1) là nghiệm của đa thức P(x). 

                                                                                                                                 (dấu chấm"." là viết tắt của dấu nhân "x")

Nếu bạn thấy đúng thì nha ! Cảm ơn.

a, A ( x ) = -x3 - 2x2 + 5x + 7

B ( x ) = -3x4 + x3 + 10x2 -7

b, P ( x ) = -3x4 + 8x2 + 5x

Q ( x ) = 3x4 - 2x2 - 12x2 - 5x + 14

c, Ta thay x = -1 vào đa thức P ( x )

P ( -1 ) = -3 . ( -1 )4 + 8 . ( -1 )2 + 5 . ( -1 )

= -3 + + 8 - 5

= 0

=> x = ( -1 ) là nghiệm của đa thức P ( x )

Bài 1: Cho đa thức M(x) = 4x3 + 2x4 – x2 – x3 + 2x2 – x4 + 1 – 3x3 a) Sắp xếp đa thức trên theo lỹ thừa giảm dần của biến b) Tính M(-1) và M(1) c) Chứng tỏ đa thức trên không có nghiệm Bài 2: Cho hai đa thức: P(x) = 2x2 + 6x4 – 3x3 + 2010 và Q(x) = 2x3 – 5x2 – 3x4 – 2011 a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến. b) Tính P(x) + Q(x) và P(x) – Q(x). c) Chứng tỏ x = 0...
Đọc tiếp

Bài 1: Cho đa thức M(x) = 4x3 + 2x4 – x2 – x3 + 2x2 – x4 + 1 – 3x3

a) Sắp xếp đa thức trên theo lỹ thừa giảm dần của biến

b) Tính M(-1) và M(1)

c) Chứng tỏ đa thức trên không có nghiệm

Bài 2: Cho hai đa thức: P(x) = 2x2 + 6x4 – 3x3 + 2010 và Q(x) = 2x3 – 5x2 – 3x4 – 2011

a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến.

b) Tính P(x) + Q(x) và P(x) – Q(x).

c) Chứng tỏ x = 0 không phải là nghiệm của hai đa thức P(x) và Q(x).

Bài 3: Tìm nghiệm của đa thức:

a) P(x) = 4x – 1/2; b) Q(x) = (x-1)(x+1) c) A(x) = - 12x + 18

d) B(x) = -x2 + 16 e)C(x) = 3x2 + 12

Bài 4: Cho các đa thức: A(x) = 5x - 2x4 + x3 -5 + x2 ; B(x) = - x4 + 4x2 - 3x3 + 7 - 6x;

C(x) = x + x3 -2

a) Tính A(x) + B(x); b) A(x) - B(x) + C(x)

c) Chứng tỏ rằng x = 1 là nghiệm của A(x) và C(x) nhưng không phải là nghiệm của đa thức B(x).

<<< GIẢI GẤP CHO TỚ VỚI NHÉ ; CẦN LẮM >>>

........................CẦU XIN BẠN ĐẤY..................................

1
1 tháng 5 2018

1a, M(x)=\(x^4+x^2+1\)

b,M(-1)=(-1)\(^4\)+(-1)\(^2\)+1

=3

M(1)=(1)\(^4\)+(1)\(^2\)+1

=3

2a,P(x)=\(6x^4-3x^3+2x^2+2010\)

Q(x)=\(-3x^4+2x^3-5x^2-2011\)

b,P(x)+Q(x)=6x\(^4\)-3x\(^3\)+2x\(^2\)+2010-3x\(^4\)+2x\(^3\)-5x\(^2\)-2011

=(6x\(^4\)-3x\(^4\))+(-3x\(^3\)+2x\(^3\))+(2x\(^2\)-5x\(^2\))+(2010-2011)

= 3x\(^4\)-x\(^3\)-3x\(^2\)-1

P(x)-Q(x)=(6x\(^4\)-3x\(^3\)+2x\(^2\)+2010)-(-3x\(^4\)+2x\(^3\)-5x\(^2\)-2011)

=6x\(^4\)-3x\(^3\)+2x\(^2\)+2010+3x\(^4\)-2x\(^3\)+5x\(^2\)+2011

=(6x\(^4\)+3x\(^4\))+(-3x\(^3\)-2x\(^3\))+(2x\(^2\)+5x\(^2\))+(2010+2011)

= \(9x^4-5x^3+7x^2+4021\)

3a,P(x)=0<=>4x-1/2=0<=>4x=1/2<=>x=1/8

vậy 1/8 là n\(_o\) của P(x)

b,Q(x)=0<=>(x-1)(x+1)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

vậy 1 và -1 là n\(_o\) của Q(x)

c,A(x)=0<=>-12x+18=0<=>-12x=-18<=>x=3/2

vậy 3/2 là n\(o\) của A(x)

d,B(x)=0<=>\(-x^2+16\)=0<=>-x\(^2\)=16<=>-(x)\(^2\)=-(\(\pm\)4)\(^2\)

<=>x=\(\pm\)4

vậy \(\pm\)4 là n\(_o\)củaB(x)

e,C(x)=0<=>3x\(^2\)+12=0<=>3x\(^2\)=-12<=>x\(^2\)=-4<=>x\(^2\)=-(4)\(^2\)

<=>x=4

vậy 4 là n\(_o\) của C(x)