Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)
b:\(=\dfrac{x^3+x^2+3x^2+3x+5x+5}{x+1}=x^2+3x+5\)
c:\(=\dfrac{x^3-3x^2-7x+2x^2-6x-14}{x^2-3x-7}=x+2\)
d: \(=\dfrac{x^2\left(x+5\right)+5x+25-25}{x+5}=x^2+5-\dfrac{25}{x+5}\)
\(âP\left(x\right)=13x^3+4x^2-11x-2\)
\(b.Q\left(x\right)=x^3+9x-5\)
\(c.A\left(x\right)=14x^3-x^2+10x+14\)
\(d.B\left(x\right)=2x^2+x+3\)
\(F\left(x\right)=3x^4+2x^3+6x^2-x+2\)
\(G\left(x\right)=-3x^4-2x^3-5x^2+x-6\)
a: f(x)=3x^4+2x^3+6x^2-x+2
g(x)=-3x^4-2x^3-5x^2+x-6
f(x)+g(x)
=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6
=x^2-4
f(x)-g(x)
=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6
=6x^4+4x^3+11x^2-2x+8
a: f(x)=3x^4+2x^3+6x^2-x+2
g(x)=-3x^4-2x^3-5x^2+x-6
b: H(x)=f(x)+g(x)
=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6
=x^2-4
f(x)-g(x)
=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6
=6x^4+4x^3+11x^2-2x+8
c: H(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
a: \(x^2=2\)
=>\(x^2=\left(\sqrt{2}\right)^2\)
=>\(x=\pm\sqrt{2}\)
b: \(x^2=9\)
=>\(x^2=3^2\)
=>\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(\left(x-\sqrt{2}\right)^2=2\)
=>\(\left[{}\begin{matrix}x-\sqrt{2}=\sqrt{2}\\x-\sqrt{2}=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=0\end{matrix}\right.\)
d: \(4x^2-1=0\)
=>\(4x^2=1\)
=>\(x^2=\dfrac{1}{4}\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a, Để f(x) có nghiệm thì f(x) = 0
Hay: 4x2 - x = 0 ⇒ x(4x - 1) = 0 \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy...
b, Để f(x) có nghiệm thì f(x) = 0
Hay: x2 - 121 = 0 ⇒ x2 = 121 ⇒ \(\left[{}\begin{matrix}x=11\\x=-11\end{matrix}\right.\)
Vậy...
c, Để f(x) có nghiệm thì f(x) = 0
Hay: 5x + 2 = 0 \(\Rightarrow x=-\dfrac{2}{5}\)
Vậy...
d, Để đa thức có nghiệm thì 5x2 - 7x - 6 = 0
⇒ 5x2 - 10x + 3x - 6 = 0
⇒ 5x(x - 2) + 3(x - 2) = 0
⇒ (x - 2)(5x + 3) = 0
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-3}{5}\end{matrix}\right.\)
Vậy...