Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne-2;-3;-4;-5;-6\)
\(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\Leftrightarrow\left(x+2\right)\left(x+6\right)=32\)
\(\Leftrightarrow x^2+8x-20=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
\(...\Leftrightarrow\frac{1}{\left(x+2\right) \left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{18}\Leftrightarrow\frac{x+6}{\left(x+2\right)\left(x+6\right)}-\frac{x+2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\Rightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\)
\(\Rightarrow\left(x+2\right)\left(x+6\right)=72\)
=> \(x^2+8x-60=0\)
Phân tich đa thức thành nhân tử để tìm x
ĐKXĐ:\(x\ne1;2;3;4;5\)
\(\Leftrightarrow\frac{1}{x^2-x-2x+2}+\frac{1}{x^2-2x-3x+6}+\frac{1}{x^2-3x-4x+12}+\frac{1}{x^2-4x-5x+20}=\frac{1}{15}\)
\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}=\frac{1}{15}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+\frac{1}{x-4}-\frac{1}{x-5}=\frac{1}{15}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-5}=\frac{1}{15}\)
\(\Leftrightarrow\frac{15\left(x-5\right)-15\left(x-1\right)}{15\left(x-1\right)\left(x-5\right)}=\frac{\left(x-1\right)\left(x-5\right)}{15\left(x-1\right)\left(x-5\right)}\)
\(\Rightarrow15x-75-15x+15=x^2-6x+5\)
\(\Leftrightarrow x^2-6x+65=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+56=0\)
\(\Leftrightarrow\left(x-3\right)^2=-56\) (Vô lý)
Vì bình phương một số không thể bằng âm
Vây \(S=\varnothing\)
bài 1+2: phân tích mẫu thành nhân tử r` áp dụng
1/ab=1/a-1/b
bài 3+4: quy đồng rút gọn blah...
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
\(\Leftrightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+....+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{4}{32}\)
\(\Rightarrow x^2+8x+12=32\)
\(\Leftrightarrow x^2+8x-20=0\)
Đến đây đơn giản rồi nhé
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=0\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=0\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{x+6}\)
\(\Leftrightarrow x+6=x+2\)
\(\Leftrightarrow x-x=2-6\)
\(\Leftrightarrow0x=-4\)
=> PT vô nghiệm
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}=\frac{3}{40}\)
\(\Leftrightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{3}{40}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{3}{40}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+5}=\frac{3}{40}\)
\(\Leftrightarrow\frac{x+5-x-2}{\left(x+2\right)\left(x+5\right)}=\frac{3}{40}\)
\(\Leftrightarrow\frac{3}{\left(x+2\right)\left(x+5\right)}=\frac{3}{40}\Leftrightarrow\left(x+2\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+2\right)\left(x+5\right)=8.5=\left(-8\right).\left(-5\right)\)
<=> x + 2 = 5 hoặc x + 2 = -8
<=> x = 3 hoặc x = -10
Vậy x = 3 hoặc x = -10
\(\frac{1}{x^2+9x+20}=\frac{1}{15}-\frac{1}{x^2+5x+4}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne-4\\x\ne-5\end{cases}}\)
<=> \(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+1\right)\left(x+4\right)}=\frac{1}{15}\)
<=> \(\frac{x+1}{\left(x+1\right)\left(x+4\right)\left(x+5\right)}+\frac{x+5}{\left(x+1\right)\left(x+4\right)\left(x+5\right)}=\frac{1}{15}\)
<=> \(\frac{2x+6}{\left(x+1\right)\left(x+4\right)\left(x+5\right)}=\frac{1}{15}\)
=> \(\left(x+1\right)\left(x+4\right)\left(x+5\right)=30x+90\)
<=> \(x^3+10x^2+29x+20-30x-90=0\)
<=> \(x^3+10x^2-x-70=0\)
đến đây không phân tích được nữa