Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = -3 vào pt ta đc:
-27 + 9a + 27 - 9 = 0
=> 9a - 9 =0
=> a =1
Thay a = 1 vào pt
x^3 + x^2 - 9x -9 =0
=> x^2( x + 1 ) - 9( x + 1 ) = 0
=> ( x+ 1) ( x^2 -9) =0
=>\(\orbr{\begin{cases}x=-1\\x^2-9=0\end{cases}}\)
=> x =-1 hoặc 3 hoặc -3
\(\left(x^2+x\right)^2+9x^2+9x+14\)
= \(\left(x^2+x\right)^2-4+\left(9x^2+9x+18\right)\)
= \(\left(x^2+x\right)^2-2^2+9\left(x^2+x+2\right)\)
= \(\left(x^2+x+2\right)\left(x^2+x-2\right)+9\left(x^2+x+2\right)\)
= \(\left(x^2+x+2\right)\left(x^2+x+7\right)\)
Chúc bạn làm bài tốt!!!!!!
ai giúp mình với . ko bik có sai đề không chứ minh giải miết không ra
a/\(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)b/
\(3x^2+9x-30=3\left(x^2+3x-10\right)\)
c/
\(x^2-3x+2=x^2-x-2x+2=x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
d/\(x^2-9x+18=x^2-3x-6x+18=x\left(x-3\right)-6\left(x-3\right)=\left(x-3\right)\left(x-6\right)\)e/
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\)f/\(x^2-5x-14=x^2+2x-7x-14=x\left(x+2\right)-7\left(x+2\right)=\left(x+2\right)\left(x-7\right)\)
g/
\(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
h/
\(x^2-7x+12=x^2-4x-3x+12=x\left(x-4\right)-3\left(x-4\right)=\left(x-4\right)\left(x-3\right)\)i/\(x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
a) Ta có: \(x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
b) Ta có: \(3x^2+9x-30\)
\(=3\left(x^2+3x-10\right)\)
\(=3\left(x^2+5x-2x-10\right)\)
\(=3\left[x\left(x+5\right)-2\left(x+5\right)\right]\)
\(=3\left(x+5\right)\left(x-2\right)\)
c) Ta có: \(x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
d) Ta có: \(x^2-9x+18\)
\(=x^2-3x-6x+18\)
\(=x\left(x-3\right)-6\left(x-3\right)\)
\(=\left(x-3\right)\left(x-6\right)\)
e) Ta có: \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
f) Ta có: \(x^2-5x-14\)
\(=x^2-7x+2x-14\)
\(=x\left(x-7\right)+2\left(x-7\right)\)
\(=\left(x-7\right)\left(x+2\right)\)
g) Ta có: \(x^2-6x+5\)
\(=x^2-x-5x+5\)
\(=x\left(x-1\right)-5\left(x-1\right)\)
\(=\left(x-1\right)\left(x-5\right)\)
h) Ta có: \(x^2-7x+12\)
\(=x^2-3x-4x+12\)
\(=x\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-4\right)\)
i) Ta có: \(x^2-7x+10\)
\(=x^2-2x-5x+10\)
\(=x\left(x-2\right)-5\left(x-2\right)\)
\(=\left(x-2\right)\left(x-5\right)\)
Bạn chỉ cần nhân vào , rút gọn rồi thay giá trị của x vào thôi .
Còn khó quá không biết làm thì thay luôn giá trị của x vào thôi .
Bài 1 :
a. Thay x = 3 vào phương trình đã cho, ta được:
12-2(1-3)2 = 4(3-m)-(3-3)(2.3+5)
12-8 = 12-4m
4m = 12-12+8
4m = 8
m = 2
Vậy với giá trị của m = 2 thì phương trình nhận x =3 là nghiệm
b.Thay x=1 vào phương trình đã cho, ta được :
(9.1+1)(1-2m) = (3.1+2)(3.1-5)
10(1-2m) = -10
10 -20m = -10
-20m = -10-10
-20m = -20
m = 1
Vậy với m = 1 thì phương trình nhận x = 1 là nghiệm
Bài 1:
a: =>9x^2-6x+1=9x^2-2x
=>-4x=-1
=>x=1/4
b: \(\Leftrightarrow x^2+6x+9-x^2-2x-3=14\)
=>4x+6=14
=>4x=8
=>x=2
Bài 2:
a: \(=2x^2-6x+x-3-x^2+5x+3x=x^2+3x-3\)
b: =x^3-6x^2+12x-8-x^3+6x^2
=12x-8
Ta có :
\(x^2-9x+14=0\)
\(\Leftrightarrow\)\(\left(x^2-2.x.\frac{9}{2}+\frac{81}{4}\right)-\frac{25}{4}=0\)
\(\Leftrightarrow\)\(\left(x-\frac{9}{2}\right)^2=\frac{25}{4}\)
\(\Leftrightarrow\)\(\left(x-\frac{9}{2}\right)^2=\left(\frac{5}{2}\right)^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-\frac{9}{2}=\frac{5}{2}\\x-\frac{9}{2}=\frac{-5}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}+\frac{9}{2}\\x=\frac{-5}{2}+\frac{9}{2}\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{14}{2}\\x=\frac{4}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)
Vậy \(x=2\) hoặc \(x=7\)
Chúc bạn học tốt ~
Mình quên kết luận nha bạn
Vậy nghiệm của đa thức \(N\left(x\right)=x^2-9x+14\) là \(x=2\) và \(x=7\)
Chúc bạn học tốt ~