Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+xy+y^2=2x+y\)
đk có nghiệm của Pt:
\(x^2+x\left(y-2\right)+y^2-y=0\left(1\right)\)
để tồn tại x thì Pt 1 phải có nghiệm
\(\left(y-2\right)^2-4\left(y^2-y\right)\)
\(-3y^2+4\left(vl\right)\)
Vậy Pt kia k có nghiệm nguyên.
đúng là thanh niên trong đội tuyển toán yêu dấu của cô chủ nhiệm
Ta có: nhân hai vế vs 2:
2x2+2y2+2xy=4x+2y
=> (x2-4x+4)+(x2+2xy+y2)+(y2-2y+1)=5
=> (x-2)2+(x+y)2+(y-1)2=5=02+12+22
Thử các trường hợp rồi giải ra nhé! Chúc bạn học tốt!
Tìm x,y thỏa mãn: X^2y+xy-x=4
(Giải theo cách lớp 6, đừng theo cái phương trình vô nghiệm gì đấy ạ:v)
=>y(x^2+x)-x-1=3
=>(x+1)(xy-1)=3
=>\(\left(x+1;xy-1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right);\left(-4;0\right)\right\}\)
\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)
=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)
\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)
=>(x-2)y-2x=0
=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )
=>x=2
=>y-2=0
=>y=2
vậy x=y=2
phương trình đã cho có thể đưa về dạng:
(x+1)(y+1)=10 (1)
từ (1) ta suy ra (x+1) là ước của 10 hay (x+1) thuộc {+-1;+-2;+-5;+-10}
từ đó ta tìm đc các nghiệm phương trình là:
(1;4);(4;1);(-3;-6);(-6;-3);(0;9);(9;0);(-2;-11);(-11;-2)
lớp 6 mà học cái này sao ???