Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x = 0 thì \(y=\pm1\)
Xét \(x\ne0\). Từ phương trình, ta có: \(4y^2=\left(2x^2+x\right)^2+3x^2+4x+4>\left(2x^2+x\right)^2\)
Hơn nữa: \(4y^2=\left(2x^2+x+2\right)^2-5x^2< \left(2x^2+x+2\right)^2\)
Suy ra: \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)
Do đó, ta có: \(4y^2=\left(2x^2+x+1\right)^2\) hay \(3\left(1+x+x^2+x^3+x^4\right)=\left(2x^2+x+1\right)^2\)
giải phương trình này, ta được: x = -1 haowcj x = 3
Từ đó => Nghiệm của phương trình là: (0;1);(0;-1);(-1;1);(-1;-1);(3;11);(3;-11)
\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)
\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)
Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương
=> xy=0 hoặc xy-1 =0
+) Nếu xy=0 thay vào (1) ta có
\(x^2+y^2=0\Leftrightarrow x=y=0\)
+)Nếu xy-1 =0 hay xy=1 ta có
\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)
Vậy x=0 ; y=0
Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0
\(x^6-2x^3y-x^4+y^2+7=0\)
\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4+7=0\)
\(\Leftrightarrow\left(x^3-y\right)^2-\left(x^2\right)^2=-7\)
\(\Leftrightarrow\left(x^3-y+x^2\right)\left(x^3-y-x^2\right)=-7\)
Liệt kê ước 7 ra rồi lm đc
\(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)
\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)
\(\Rightarrow4y^2=\left(2x^2+16x\right)\left(2x^2+16x+14\right)\)
\(=\left(2x^2+16x+7-7\right)\left(2x^2+16x+7+7\right)\)
\(=\left(2x^2+16x+7\right)^2-49\)
\(\Leftrightarrow\left(2x^2+16x+7\right)^2-4y^2=49\)
\(\Leftrightarrow\left(2x^2+16x+7-2y\right)\left(2x^2+16x+7+2y\right)=49=1.49=7.7\)
Xét các trường hợp và thu được các nghiệm là: \(\left(-3,0\right),\left(0,0\right)\).
Trả lời
Giải phương trình nghiệm nguyên dương
Do nên ta có
Mặt khác ta có
Vậy PT đã cho có nghiệm duy nhất
ccccc
không biết thì đừng thể hiện