K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016
VT >0 với mọi x,y dương nên phương trình vô nghiệm
14 tháng 11 2017

Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.

8 tháng 2 2019

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)

Coi phương trình trên có ẩn là x.

Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)

\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)

\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)

Thay vào từng giá trị nguyên của y để tìm x=)

3 tháng 8 2019

\(25\equiv9\left(mod16\right)\)=> 9y+1 chia hết cho 16 => 9y chia 16 dư 15 => y chia 16 dư 7 => y nhỏ nhất =7 => x nhỏ nhất = 11

11 tháng 6 2015

=> (x2 + 2xy + y2) - 2x  - 10y - 4y2 + 4 = 0

<=> (x+y)2 - 2.(x+y) + 1 - (4y2 + 8y + 4) + 7 = 0

<=> (x+ y - 1)2 - (2y + 2)2  =  -7

<=> (x + y - 1 + 2y + 2).(x + y - 1 - 2y - 2) = -7

<=> (x + 3y + 1).(x - y - 3) = -7

Vì x; y nguyên nên x + 3y + 1 \(\in\) Ư(-7) = {7;-7;1;-1} .Hơn nữa; x; y dương nên x + 3y + 1 > 1

=> x + 3y + 1 = 7 

=> x - y  - 3 = -1

=> (x+3y+1) - (x - y - 3) = 4y + 4 = 8 => y = 1 

=> x = 7 - 1 - 3y = 3

Vậy x = 3; y = 1

 

11 tháng 6 2015

Coi phương trình bậc 2 ẩn x tham số y ta có :

x^2+2(y-1)x-(3y^2+10y-4)=0

Để phương trình nghiệm  nguyên x thì điều kiện cần là phải là số chính phương 

Ta có := (y-1)^2+3y^2+10y-4=4y^2+8y-3=k^2(k thuộc N)

=>(2y+2)^2-k^2=7

<=>(2y+2-k)(2y+2+k)=(-7)(-1)=1.7

Vì 2y+2+k > 2y +2-k nên ta có bảng sau:

2y+2+k7-1
2y+2-k1-7
y1-3
k3           -5 ( loại)

Voi y =  1 ta co :x^2+2(y-1)x-(3y^2+10y-4)=0

Trở thành:x^2 - 9=0=>x=3;x=-3

Vấp pt đã cho ở 2 nghiệm nguyên là (3;1) và (-3;1)

 

 

6 tháng 3 2022

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

8 tháng 2 2019

PT \(\Leftrightarrow\left(3x^2-5x\right)-2xy+\left(y+2\right)=0\)

Xét \(\Delta'=y^2-\left(y+2\right)\ge0\Leftrightarrow y^2-y-2\ge0\)

\(\Leftrightarrow-y^2+y+2\le0\Leftrightarrow\left(y-2\right)\left(y+1\right)\)

\(\Leftrightarrow-1\le y\le2\)

Thế vô làm tiếp :v