K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

\(x^2-12y^2+xy-x+3y+5=0\)

\(\Leftrightarrow x^2+x\left(y-1\right)+\left(3y-12y^2+5\right)=0\)

Xét \(\Delta=\left(y-1\right)^2-4.1.\left(3y-12y^2+5\right)=49y^2-14y-19=\left(7y-1\right)^2-20\ge0\)

Để x nhận giá trị nguyên thì \(\Delta\) là số chính phương.

Suy ra \(\left(7y-1\right)^2-20=k^2\Leftrightarrow\left(7y-k-1\right)\left(7y+k+1\right)=20\)

Xét các trường hợp được y = 1 thỏa mãn.

Khi đó ta suy ra \(x=2\) hoặc \(x=-2\)

Vậy (x;y) = (-2;1) ; (2;1)

16 tháng 10 2016

x2 - 12y2 + xy - x + 3y + 5 = 0

<=> (x2 - 9y2) + (- 3y2 + xy) + (3y - x) = - 5

<=> (x - 3y)(x + 3y) + y(x - 3y) - (x - 3y) = - 5

<=> (x - 3y)(x + 3y + y - 1) = - 5

<=> (x - 3y)(x + 4y - 1) = - 5

<=> (x - 3y, x + 4y - 1) = (- 1, 5; 5, - 1; 1, - 5; - 5, 1)

Giải ra tìm được (x, y) = (2, 1; - 2, 1)

13 tháng 11 2016

xy - 2x - 3y + 1 = 0

<=> x(y - 2) = 3y - 1

<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)

Để x nguyên thì (y - 2) phải là ước của 5 hay

(y - 2) = (1, 5, - 1, - 5)

Giải tiếp sẽ ra

29 tháng 5 2020

Để Phương trình có nghiệm nguyên thì \(\Delta=\left(-y\right)^2-4.1.\left(y^2-4\right)\ge0\Leftrightarrow-3y^2+16\ge0\)

\(\Leftrightarrow y^2\le\frac{16}{3}\)\(\Leftrightarrow\sqrt{\frac{-16}{3}}\le y\le\sqrt{\frac{16}{3}}\Leftrightarrow-2\le y\le2\)( vì y nguyên )

từ đó tìm được y,x

22 tháng 8 2020

1+1=2

2+2=3

3+3=4

4+4=5

5+5=6

6+6=7

7+7=8

8+8=9

9+9=10 ^^

13 tháng 11 2016

x2 - xy + y2 - 4 = 0

Xét phương trình theo nghiệm x. Ta có

Để pt có nghiệm thì ∆\(\ge0\)

<=> y2 - 4(y2 - 4) \(\ge0\)

<=> \(y^2\le\frac{16}{3}\Leftrightarrow-2\le y\le2\)

Thế vào sẽ tìm được x, y nhé

2 tháng 11 2017

1) Vì vai trò của x;y;z;t như nhau nên giả sử x≤y≤z≤tx≤y≤z≤t 

Suy ra x+y+z+t≤4tx+y+z+t≤4t 

↔xyzt≤4t↔xyz≤4↔xyzt≤4t↔xyz≤4 

Do x;y;z;t nguyên dương nên 0<xyz≤4→xyz=1;2;3;40<xyz≤4→xyz=1;2;3;4 

Xét 4 trường hợp sau: 

• TH1TH1 : xyz=1xyz=1 

→x=y=z=1→x=y=z=1 

Thay vào (1) có : 3+t=t3+t=t (vô lí) 

TH1TH1 không xảy ra: loại 

• TH2:xyz=2TH2:xyz=2 

Do x≤y≤z→x=y=1;z=2x≤y≤z→x=y=1;z=2 

Thay vào (1) có : 4+t=2t→t=44+t=2t→t=4 (thỏa mãn) 

(x;y;z;t) = (1;1;2;4) 

• TH3:xyz=3TH3:xyz=3 

→x=y=1;z=3→x=y=1;z=3 

Thay vào (1) có : 5+t=3t→2t=55+t=3t→2t=5 (vô lí vì 5 k chia hết cho 2) 

TH3TH3 k xảy ra : loại 

• TH4TH4 : xyz = 4 

+) x = 1; y = z = 2 

→5+t=4t→5=3t→→5+t=4t→5=3t→ t không là số nguyên

+) x=y=1;z=4x=y=1;z=4 

Thay vào (1) tìm được t = 2 (không thỏa mãn do z≤tz≤t(gt) mà z = 4 > 2 = t) 

TH4TH4 không xảy ra: loại 

Vậy (x;y;z;t) = (1;1;2;4) và các hoán vị

2)xyz = 9 + x + y + z 
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz 
giả sử: x ≥ y ≥ z ≥ 1, ta có: 
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2 
=> z^2 ≤ 12 => z = 1, 2 , 3 
*z = 1: 
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y 
=> y ≤ 3 => y = 1,2,3 
y =1 => x= 11 + x (vô nghiệm) 
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1) 
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên) 

* z = 2 
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y 
=> y ≤ 5/2 => y = 2 
=> 4x = 13 + x (không có nghiệm x nguyên) 

* z =3: 
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y 
=> y ≤ 14/3 => y = 3, 4 
y = 3 => 9x = 15 + x (không có nghiệm x nguyên) 
y = 4 => 12x = 16 + x (không có nghiệm x nguyên) 

Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.

5)

 Chuyen sang ve trai cac hang tu chua x,y,z:
(x^2 - xy + y^2/4) + 3(y^2/4 - 2.y/2 + 1) + (z^2-2z+1) -3-1 <= -4
<=> (x-y/2)^2 + 3.(y/2 -1)^2 + (z-1)^2 <= 0
Binh phuong cua 1 so thi ko the am nen suy ra fai xay ra dong thoi:
x-y/2 =0 ; y/2 -1 =0 vaf z-1 =0
giai ra duoc x= 1; y=2; z=1 thoa man