K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

\(x^2-12y^2+xy-x+3y+5=0\)

\(\Leftrightarrow x^2+x\left(y-1\right)+\left(3y-12y^2+5\right)=0\)

Xét \(\Delta=\left(y-1\right)^2-4.1.\left(3y-12y^2+5\right)=49y^2-14y-19=\left(7y-1\right)^2-20\ge0\)

Để x nhận giá trị nguyên thì \(\Delta\) là số chính phương.

Suy ra \(\left(7y-1\right)^2-20=k^2\Leftrightarrow\left(7y-k-1\right)\left(7y+k+1\right)=20\)

Xét các trường hợp được y = 1 thỏa mãn.

Khi đó ta suy ra \(x=2\) hoặc \(x=-2\)

Vậy (x;y) = (-2;1) ; (2;1)

16 tháng 10 2016

x2 - 12y2 + xy - x + 3y + 5 = 0

<=> (x2 - 9y2) + (- 3y2 + xy) + (3y - x) = - 5

<=> (x - 3y)(x + 3y) + y(x - 3y) - (x - 3y) = - 5

<=> (x - 3y)(x + 3y + y - 1) = - 5

<=> (x - 3y)(x + 4y - 1) = - 5

<=> (x - 3y, x + 4y - 1) = (- 1, 5; 5, - 1; 1, - 5; - 5, 1)

Giải ra tìm được (x, y) = (2, 1; - 2, 1)

28 tháng 8 2019

bằng 0 

13 tháng 11 2016

xy - 2x - 3y + 1 = 0

<=> x(y - 2) = 3y - 1

<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)

Để x nguyên thì (y - 2) phải là ước của 5 hay

(y - 2) = (1, 5, - 1, - 5)

Giải tiếp sẽ ra

4 tháng 5 2018

\(PT\Leftrightarrow\left(x+y\right)\left(x+3y\right)-2\left(x+y\right)-5=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+3y-2\right)=5\)

=> phương trình ước số

3 tháng 1 2020

a) xy2 + 2xy - 243y + x = 0

\(\Leftrightarrow\)x ( y + 1 )2 = 243y

Mà ( y ; y + 1 ) = 1 nên 243 \(⋮\)( y + 1 )2

Mặt khác ( y + 1 ) 2 là số chính phương nên ( y + 1 )2 \(\in\){ 32 ; 92 }

+) ( y + 1 )2 = 32 \(\Rightarrow\orbr{\begin{cases}y+1=3\\y+1=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=54\\y=-4\Rightarrow x=-108\end{cases}}}\)

+) ( y + 1 )2 = 92 \(\Rightarrow\orbr{\begin{cases}y+1=9\\y+1=-9\end{cases}\Rightarrow\orbr{\begin{cases}y=8\Rightarrow x=24\\y=-10\Rightarrow x=-30\end{cases}}}\)

vậy ...

b) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)( đk : x > 0 )

\(\Leftrightarrow\sqrt{x^2+12}-4=3x+\sqrt{x^2+5}-9\)

\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right)=0\)

Vì \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)

Do đó : \(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)nên x - 2 = 0 \(\Leftrightarrow\)x = 2 

24 tháng 7 2021

\(x^2-4x+2y-xy+9=0\)

\(\Leftrightarrow x^2-4x+4+2y-xy+5=0\)

\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)y+5=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2-y\right)=-5\)

\(\left[{}\begin{matrix}\left(x-2\right)\left(x-2-y\right)=-5\cdot1\left(1\right)\\\left(x-2\right)\left(x-2-y\right)=-1\cdot5\left(2\right)\end{matrix}\right.\)

Vì đề kêu tìm nghiệm nguyên nên ta có

Th1:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-5\\x-2-y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=1\\x-2-y=-5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\end{matrix}\right.\)

Th2:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-1\\x-2-y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=5\\x-2-y=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\y=6\end{matrix}\right.\end{matrix}\right.\)

Vậy .....