Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x+y=xy
=> x-xy+y=0
=> x(1-y)+y=0
=> x(1-y)+y -1 =-1
=> x(1-y)- (1-y) =-1=> (1-y)(x-1)=-1
* 1-y=-1 => y=2
x-1=1=> x=2
* 1-y =1 => y=0
x-1=-1 => x=0
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))
\(x^5\) - 2\(x^4\) - (y2 + 3)\(x\) + 2y2 - 2 = 0
(\(x^5\) - 2\(x^4\))- (y2 + 3)\(x\) + 2.(y2 + 3) - 8 = 0
\(x^4\).(\(x\) - 2) - (y2 + 3).(\(x\) - 2) - 8 = 0
(\(x\) - 2).(\(x^4\) - y2 - 3) = 8
8 = 23; Ư(8) = {-8; - 4; -2; - 1; 1; 2; 4; 8}
Lập bảng ta có:
\(x-2\) | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
\(x\) | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 10 |
\(x^4\) - y2 - 3 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
y | \(\pm\)\(\sqrt{1294}\) | \(\pm\)\(15\) | \(\pm\)1 | \(\pm\)\(\sqrt{6}\) | y2 = -10 (ktm) | \(\pm\)\(\sqrt{249}\) | \(\pm\)\(\sqrt{1291}\) | \(\pm\)\(\sqrt{9996}\) |
vì \(x\); y nguyên nên theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:
(\(x\); y) = (0; -1;); (0; 1)
We have equation \(x+y=xy\)
\(\Rightarrow xy-x-y=0\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=1=\left(-1\right).\left(-1\right)=1.1\)
So equation has two value \(\left(2;2\right),\left(0;0\right)\)
We have \(p\left(x+y\right)=xy\)
\(\Leftrightarrow xy-px-py=0\)
\(\Leftrightarrow xy-px-py+p^2=p^2\)
\(\Leftrightarrow x\left(y-p\right)-p\left(y-p\right)=p^2\)
\(\Leftrightarrow\left(x-p\right)\left(y-p\right)=p^2\)
But p is prime so \(Ư\left(p^2\right)=\left\{1;p;p^2\right\}\)
\(\Rightarrow\left(x-p\right)\left(y-p\right)=1.p^2=p.p=p^2.1=\left(-p\right).\left(-p\right)\)
\(=\left(-1\right).\left(-p^2\right)=\left(-p^2\right).\left(-1\right)\)
So equation has values \(S=\left(p+1;p^2+p\right);\left(2p;2p\right);\left(p^2+p;p+1\right);\left(0;0\right)\)
\(;\left(p-1;p-p^2\right);\left(p-p^2;p-1\right)\)
thực sự mk rất mún giúp bn nhưng mk chưa hok tới!! xin lỗi
45646565557657767876876876565657676768876334455454655454
mình giải đc phần a) thôi:
x+y=xy
<=> x+y-xy=0
<=> x(1-y)-(1-y)+1=0
<=> (1-y)(x-1)=-1
do đó: 1-y=1;x-1=-1
hoặc 1-y=-1; x-1=1
+) 1-y=1 => y=0
x-1=-1=> x=0
+) 1-y=-1 => y=2
x-1=1 => x=2
=> cặp x,y cần tìm là (0;0) và (2;2)
Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).
Vậy pt vô nghiệm nguyên.
2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).