- Căn bặc mấy, bạn?
- Nếu căn bậc nguyên dương thì chỉ có 4 nghiệm (x;y) = (0;-3); (0;-2); (0;-1); (0;0) vì 2 số tự nhiên liên tiếp là nguyên tố cùng nhau nên vế phải luôn là số vô tỷ ko bẳng vế trái là một số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+x=y^4+y^3+y^2+y\) (1)
\(\Leftrightarrow4y^4+4y^3+4y^2+4y+1=4x^2+4x+1\)
\(\Leftrightarrow\left(2y^2+y\right)^2+3y^2+4y+1=\left(2x+1\right)^2\)
Ta có
\(\left(2y^2+y\right)^2< \left(2y^2+y\right)+3y^2+4y+1< \left(2y^2+y+2\right)^2\) (2)
\(\left(2\right)\Leftrightarrow\hept{\begin{cases}3y^2+4y+1>0\\\left(3y^2+y\right)^2+4\left(2y^2+y\right)+4-\left(2y^2+y\right)^2-3y^2-4y-1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(y+1\right)\left(3y+1\right)>0\\5y^2+3>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y< -1\\y>\frac{-1}{3}\end{cases}}\)
\(\Leftrightarrow y\ne-1\)(do y là số nguyên)
lúc đó (1) xảy ra khi
\(\left(2x+1\right)^2=\left(2y^2+y+1\right)^2\) (3)
tức là \(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y+1\right)^2\)
\(\Leftrightarrow\)\(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y\right)^2+2\left(2y^2+y\right)+1\)
\(\Leftrightarrow3y^2+4y=4y^2+2y\)
\(\Leftrightarrow y^2-2y=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\y=2\end{cases}}\)
Thay vào (3) tìm được y
Nghiệm (y,x) là (0,0),(0,-1),(2,5),(2,-6),(-1,0),(-1,-1)