Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2-2xy+5y^2=y+1$
$\Leftrightarrow x^2-2xy+y^2=y+1-4y^2$
$\Leftrightarrow y+1-4y^2=(x-y)^2\geq 0$
$\Leftrightarrow y+1-4y^2\geq 0$
$\Leftrightarrow 4y^2-y-1\leq 0$
$\Leftrightarrow 4y^2-y-3\leq -2<0$
$\Leftrightarrow (y-1)(4y+3)<0$
$\Leftrightarrow \frac{-3}{4}< y< 1$
$y$ nguyên nên $y=0$
Khi đó: $x^2=1\Leftrightarrow x=\pm 1$
Vậy $(x,y)=(\pm 1,0)$
1. \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)
\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)
Ta lập bảng giá trị:
\(2y-1\) | 1 | 5 | -1 | -5 |
\(2x+1\) | 5 | 1 | -5 | -1 |
\(x\) | 2 | 0 | -3 | -1 |
\(y\) | 1 | 3 | 0 | -2 |
Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)
2xy-x+y=3
2(2xy-x+y)=2.3
4xy-2x+2y=6
2x(2y-1)-2y=6
2x(2y-1)-2y+1=6+1
2x(2y-1)-(2y-1)=7
(2x-1)(2y-1)=7
\(2xy+6x-y=2020\)
\(\Leftrightarrow2x\left(y+3\right)-\left(y+3\right)=2017\)
\(\Leftrightarrow\left(2x-1\right)\left(y+3\right)=2017=2017.1=1.2017\)
\(=\left(-2017\right).\left(-1\right)=\left(-1\right).\left(-2017\right)\)
Lập bảng:
\(2x-1\) | \(2017\) | \(1\) | \(-1\) | \(-2017\) |
\(y+3\) | \(1\) | \(2017\) | \(-2017\) | \(-1\) |
\(x\) | \(1009\) | \(1\) | \(0\) | \(-1008\) |
\(y\) | \(-2\) | \(2014\) | \(-2020\) | \(-4\) |
Vậy phương trình có 4 cặp nghiệm nguyên \(\left(1009;-2\right);\left(1;2014\right);\left(0;-2020\right);\left(-1008;-4\right)\)
Ta có: 2xy - x - y = 1
=> x(2y-1) - y =1 => 2x(2y-1) - 2y = 2 => 2x(2y-1) - (2y-1) = 3
=> (2y-1)(2x-1) = 3
Ta có bảng:
cảm ơn bạn nha