K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018
Ta thấy10z⋮3 nên z⋮3. Đặt z=3k ta được:6x+15y+10.3k=3⇔2x+5y+10k=1 Đưa về phương trình hai ẩn x,y với các hệ số tương ứng 2 và 5 là hai số nguyên tố cùng nhau. 2x+5y=1−10k x=1−10k−5y2=−5k−2y+1−y2 Đặt 1−y2 =t với t nguyên. Ta có: =1−2tx=−5k−2(1−2t)+t=5t−5k−2z=3k Nghiệm của phương trình: (5t−5k−2;1−2t;3k) với t,k là các số nguyên tùy ý.
6 tháng 3 2020

\(2xy+6x-y=2020\)

\(\Leftrightarrow2x\left(y+3\right)-\left(y+3\right)=2017\)

\(\Leftrightarrow\left(2x-1\right)\left(y+3\right)=2017=2017.1=1.2017\)

\(=\left(-2017\right).\left(-1\right)=\left(-1\right).\left(-2017\right)\)

Lập bảng:

\(2x-1\)\(2017\)\(1\)\(-1\)\(-2017\)
\(y+3\)\(1\)\(2017\)\(-2017\)\(-1\)
\(x\)\(1009\)\(1\)\(0\)\(-1008\)
\(y\)\(-2\)\(2014\)\(-2020\)\(-4\)

Vậy phương trình có 4 cặp nghiệm nguyên \(\left(1009;-2\right);\left(1;2014\right);\left(0;-2020\right);\left(-1008;-4\right)\)